Python Tutorial
Release 2.7.13

Guido van Rossum
and the Python development team

January 03, 2017

Python Software Foundation
Email: docs@python.org

1 Whetting Your Appetite

2 Using the Python Interpreter

2.1 Invoking the Interpreter
2.2 The Interpreter and Its Environment

3 An Informal Introduction to Python

3.1 Using PythonasaCalculator
3.2 First Steps Towards Programming

4 More Control Flow Tools

4.1 dfStatements e e e e e e e e e e
42 forStatements e e e e e e e e e
43 Therange() Function

44 break and continue Statements, and e1lse Clauses on Loops

45 passStatements e e e e e e
4.6 DefiningFunctions e
47 More on Defining Functions,
4.8 Intermezzo: Coding Style

5 Data Structures

5.1 MoreonLists
5.2 Thedelstatement o vt ittt e e e e e
5.3 Tuplesand Sequencesot e e e
54 SetS . . e e e e e e
5.5 Dictionaries e e
5.6 Looping Techniques it
5.7 Moreon Conditions Lol e e e e e
5.8 Comparing Sequences and Other Types
6 Modules
6.1 MoreonModules L
6.2 Standard Modules e
6.3 Thedir () Function. i i i e
6.4 Packages e e e e
7 Input and Output
7.1 Fancier Output Formatting
7.2 Readingand Writing Files

8 Errors and Exceptions

CONTENTS

............ 23

29

............ 29

8.1 Syntax Errors L e e e e e e e

8.2 EXCEPIONS v i i e e e e e e e e e e e e e e
8.3 Handling EXCeptions i e e e e e e e e e e e e
8.4 Raising EXceptions L e e
8.5 User-defined EXceptions L . i e e e e
8.6 Defining Clean-up ACHONS vttt ittt e e e e e e e e e
8.7 Predefined Clean-up ACHIONS o v i v e e et e e e e e e e e e e e
Classes

9.1 A Word About Names and Objects i e
9.2 Python Scopes and Namespaces v v v v v v v i e e e e e e e e e e e e
9.3 AFirstLookat Classes. i i e e e
9.4 Random Remarks e e
9.5 Inheritance L L e e e e e e e
9.6 Private Variables and Class-local References
9.7 Oddsand Ends e e
9.8 Exceptions Are Classes TOO o i i i i i e e e e e e
0.9 TteratorS L. e e e
0.10 Generators e e e e e e e e e e e e e e e e e
9.11 Generator EXpressions oo vttt e e e e e e e e e

10 Brief Tour of the Standard Library

10.1 Operating System Interface L e
10.2 File Wildcards o o e e e
10.3 Command Line Arguments v i i v it e e e e e e e e e e e e e e
10.4 Error Output Redirection and Program Termination
10.5 String Pattern Matching oL
10.6 Mathematics o e e e e e e e e e e e
10.7 Internet ACCESS v v v v e i e e e e e e e e e e e e e e e e e
10.8 Datesand TIMes o o ot ittt e e e e e e e e e
10.9 Data Compression . . . v v v v v v v e
10.10 Performance Measurement o vt it e e e e e e e e e e e e e e e e
10.11 Quality Control L e e
10.12 Batteries Included L.

11 Brief Tour of the Standard Library — Part I1

11.1 Output Formatting o e e e e e e e e e
11.2 Templating o o e e e e e e
11.3 Working with Binary Data Record Layouts
11.4 Multi-threading o e e e e e e e e e e e e e e
I1.5 Logging. . . o o o o o e e e e e e e e e e
11.6 Weak References e
11.7 Tools for Working with Lists o e
11.8 Decimal Floating Point Arithmetic e

12 What Now?

13 Interactive Input Editing and History Substitution

13.1 Line Editing o e e e e e e e e
13.2 History SubSttution o o i e e e e e e e e e e e e e e e
133 KeyBindings o o e e e
13.4 Alternatives to the Interactive Interpreter i i it e e

14 Floating Point Arithmetic: Issues and Limitations

14.1 Representation Error

63
63
63
65
68
69
71
72
72
73
74
75

77
77
77
78
78
78
78
79
79
80
80
80
81

83
83
84
85
85
86
86
87
88

91

93
93
93
93
95

97

15 Appendix

15.1 Interactive Mode

A Glossary

B About these documents

B.1 Contributors to the Python Documentation

C History and License

C.1 History of thesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright

Index

101
101

103

113
113

115
115
116
119

131

133

Python Tutorial, Release 2.7.13

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web site, https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, see library-index. reference-index gives a more formal definition
of the language. To write extensions in C or C++, read extending-index and c-api-index. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and you
will be ready to learn more about the various Python library modules described in library-index.

The Glossary is also worth going through.

CONTENTS 1

https://www.python.org/

Python Tutorial, Release 2.7.13

2 CONTENTS

CHAPTER
ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch of
photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI application,
or a simple game.

If you’re a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you’re writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, Mac OS X, and Unix operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for large pro-
grams than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking than
C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictionaries.
Because of its more general data types Python is applicable to a much larger problem domain than Awk or even Perl,
yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces to
graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much shorter
than equivalent C, C++, or Java programs, for several reasons:

* the high-level data types allow you to express complex operations in a single statement;
* statement grouping is done by indentation instead of beginning and ending brackets;
* no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can

Python Tutorial, Release 2.7.13

link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on those machines where it is available;
putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines, the Python installation is usually placed in C: \Python27, though you can change this when
you’re running the installer. To add this directory to your path, you can type the following command into the command
prompt in a DOS box:

set path=%path%;C:\python27

Typing an end-of-file character (Control1-D on Unix, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
command: quit ().

The interpreter’s line-editing features usually aren’t very sophisticated. On Unix, whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix Interactive Input Editing and
History Substitution for an introduction to the keys. If nothing appears to happen, or if *P is echoed, command line
editing isn’t available; you’ll only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which executes the statement(s)
in command, analogous to the shell’s —c option. Since Python statements often contain spaces or other characters that
are special to the shell, it is usually advised to quote command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing —1i before the script.

All command-line options are described in using-on-general.

Python Tutorial, Release 2.7.13

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings
and assigned to the argv variable in the sys module. You can access this list by executing import sys. The
length of the list is at least one; when no script and no arguments are given, sys.argv[0] is an empty string.
When the script name is given as ’ =’ (meaning standard input), sys.argv[0] issetto ' —='. When —c command
is used, sys.argv[0] is set to ' —c’. When —m module is used, sys.argv [0] is set to the full name of the
located module. Options found after —c command or —m module are not consumed by the Python interpreter’s option
processing but left in sys . argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it prompts for
the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (. . .). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

python

Python 2.7 (#1, Feb 28 2010, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this i f statement:
>>> the_world_is_flat =1
>>> if the_world_is_flat:
print "Be careful not to fall off!"
Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2 The Interpreter and Its Environment

2.2.1 Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The best way to do it is to put one more
special comment line right after the # ! line to define the source file encoding:

—»— coding: encoding —x-

With that declaration, all characters in the source file will be treated as having the encoding encoding, and it will be
possible to directly write Unicode string literals in the selected encoding. The list of possible encodings can be found
in the Python Library Reference, in the section on codecs.

For example, to write Unicode literals including the Euro currency symbol, the ISO-8859-15 encoding can be used,
with the Euro symbol having the ordinal value 164. This script, when saved in the ISO-8859-15 encoding, will print
the value 8364 (the Unicode code point corresponding to the Euro symbol) and then exit:

—%— coding: 150-8859-15 —x%-—

currency = u"€"
print ord(currency)

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 2.7.13

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark (aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capability if Options/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating system for script files with # ! lines (only used on Unix systems).

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the world
can be used simultaneously in string literals and comments. Using non-ASCII characters in identifiers is not supported.
To display all these characters properly, your editor must recognize that the file is UTF-8, and it must use a font that
supports all the characters in the file.

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 2.7.13

8 Chapter 2. Using the Python Interpreter

CHAPTER
THREE

AN INFORMAL INTRODUCTION TO PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (>>> and ...): to
repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin with
a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means you
must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in
Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the start
of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just
a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted when
typing in examples.

Some examples:

this 1s the first comment

spam = 1 # and this is the second comment
... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, —, » and / work just like in most other languages (for example, Pascal or
C); parentheses (()) can be used for grouping. For example:

>>> 2 4+ 2

4

>>> 50 - 5%6

20

>>> (50 - 5.0x6) / 4
5.0

>> 8 / 5.0

1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1. 6) have type f1loat.
We will see more about numeric types later in the tutorial.

Python Tutorial, Release 2.7.13

The return type of a division (/) operation depends on its operands. If both operands are of type int, floor division
is performed and an int is returned. If either operand is a float, classic division is performed and a float is
returned. The // operator is also provided for doing floor division no matter what the operands are. The remainder
can be calculated with the % operator:

>> 17 / 3 # int / int —-> int

5

>>> 17 / 3.0 # int / float —-> float

5.666666666666667

>>> 17 // 3.0 # explicit floor division discards the fractional part
5.0

>>> 17 % 3 # the $% operator returns the remainder of the division

2

>>> 5 « 3 + 2 # result * divisor + remainder

17

\

With Python, it is possible to use the x » operator to calculate powers ':
>>> 5 *xx 2 # 5 squared

25

>>> 2 xx 7 # 2 to the power of 7

128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the next interactive
prompt:

>>> width = 20

>>> height = 5 » 9
>>> width » height
900

If a variable is not “defined” (assigned a value), trying to use it will give you an error:

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
'n' is not defined

NameError: name 'n

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 x 3.75 / 1.5
7.5

>>> 7.0 / 2

3.5

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

! Since »« has higher precedence than —, -3« 2 will be interpreted as — (3x+2) and thus result in —9. To avoid this and get 9, you can use
(=3) **2.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.7.13

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

In addition to int and float, Python supports other types of numbers, such as Decimal and Fraction. Python
also has built-in support for complex numbers, and uses the j or J suffix to indicate the imaginary part (e.g. 3+5 7).

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed

in single quotes (" . . .”) or double quotes (" . . . ") with the same result >. \ can be used to escape quotes:
>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," he said.’

'"Yes," he said.'

>>> "\"Yes,\" he said."
'"Yes," he said.'

>>> ""Isn\'t," she said.'’
'""Isn\'t," she said.'

In the interactive interpreter, the output string is enclosed in quotes and special characters are escaped with backslashes.
While this might sometimes look different from the input (the enclosing quotes could change), the two strings are
equivalent. The string is enclosed in double quotes if the string contains a single quote and no double quotes, otherwise
it is enclosed in single quotes. The print statement produces a more readable output, by omitting the enclosing
quotes and by printing escaped and special characters:

>>> '""Isn\'t," she said.’

'""Isn\'t," she said.'

>>> print '"Isn\'t," she said.'

"Isn't," she said.

>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print, \n is included in the output
'First line.\nSecond line.'

>>> print s # with print, \n produces a new line

First line.

Second line.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding
an r before the first quote:

>>> print 'C:\some\name' # here \n means newline!
C:\some

ame

>>> print r'C:\some\name' # note the r before the quote

C:\some\name

String literals can span multiple lines. One way is using triple-quotes: """ ..."""or '’’’ ...’’’ . End of lines are
automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line. The following
example:

2 Unlike other languages, special characters such as \n have the same meaning with both single (” . . .”) and double (" . .. ") quotes. The
only difference between the two is that within single quotes you don’t need to escape " (but you have to escape \’) and vice versa.

3.1. Using Python as a Calculator 11

Python Tutorial, Release 2.7.13

print """\

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

wnn

produces the following output (note that the initial newline is not included):

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

Strings can be concatenated (glued together) with the + operator, and repeated with «:

>>> # 3 times 'un', followed by 'ium'
>>> 3 x 'un' + 'ium'
'unununium'’

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

>>> 'Py' 'thon'
'Python'

This only works with two literals though, not with variables or expressions:
>>> prefix = 'Py'

>>> prefix 'thon' # can't concatenate a variable and a string literal

SyntaxError: invalid syntax
>>> ('un' x 3) 'ium'

SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'
'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '
ce 'to have them joined together.')
>>> text

'Put several strings within parentheses to have them joined together.'

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a
character is simply a string of size one:

>>> word = 'Python'

>>> word[0] # character in position 0
IPI

>>> word([5] # character in position 5
lnl

Indices may also be negative numbers, to start counting from the right:

>>> word[—1] # last character

Inl

>>> word[—2] # second-last character
lol

>>> word[—6]

IPI

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.7.13

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows
you to obtain a substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
le'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
"tho!

Note how the start is always included, and the end always excluded. This makes sure that s[:1] + s[i:] is
always equal to s:

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
lel

>>> word[4:] # characters from position 4 (included) to the end

lon'

>>> word[—-2:] # characters from the second-last (included) to the end
'Ol’l'

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

b ———+
' Pl y Il t]l h| ol n|
s e e
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...6 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word [1:3] is 2.

Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: string index out of range
However, out of range slice indexes are handled gracefully when used for slicing:
>>> word[4:42]
Al on |l
>>> word[42:]

Python strings cannot be changed — they are immutable. Therefore, assigning to an indexed position in the string
results in an error:

3.1. Using Python as a Calculator 13

Python Tutorial, Release 2.7.13

>>> word[0] = 'J'

TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'

TypeError: 'str' object does not support item assignment

If you need a different string, you should create a new one:

>>> '"J' + word[l:]
'Jython'

>>> word[:2] + 'py'
'"Pypy'

The built-in function 1en () returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len (s)

34

See also:

typesseq Strings, and the Unicode strings described in the next section, are examples of sequence types, and support
the common operations supported by such types.

string-methods Both strings and Unicode strings support a large number of methods for basic transformations and
searching.

formatstrings Information about string formatting with str. format ().

string-formatting The old formatting operations invoked when strings and Unicode strings are the left operand of
the % operator are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object. It
can be used to store and manipulate Unicode data (see http://www.unicode.org/) and integrates well with the existing
string objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much confusion especially with respect to
internationalization (usually written as 118n — ’ 1’ + 18 characters + ' n’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !'!
u'Hello World !'!

The small " u’ in front of the quote indicates that a Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Python Unicode-Escape encoding. The following example
shows how:

>>> u'Hello\u0020World !
u'Hello World !'!

The escape sequence \u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

14 Chapter 3. An Informal Introduction to Python

http://www.unicode.org/

Python Tutorial, Release 2.7.13

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient that
the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote with
‘ur’ to have Python use the Raw-Unicode-Escape encoding. It will only apply the above \uXXXX conversion if there
is an uneven number of backslashes in front of the small ‘u’.

>>> ur'Hello\u0020World !’
u'Hello World !’

>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the
basis of a known encoding.

The built-in function unicode () provides access to all registered Unicode codecs (COders and DECoders). Some
of the more well known encodings which these codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter
two are variable-length encodings that store each Unicode character in one or more bytes. The default encoding is
normally set to ASCII, which passes through characters in the range 0 to 127 and rejects any other characters with an
error. When a Unicode string is printed, written to a file, or converted with st r (), conversion takes place using this
default encoding.

>>> u"abc"

u'abc!

>>> str(u"abc")

'abc'!

>>> u"aoi"

u'\xed\xfo\xfc'

>>> str(u"aoi")

Traceback (most recent call last):
File "<stdin>", line 1, in ?

UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provide an encode ()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> y"aou".encode ('utf-8")
"\xc3\xad\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use the
unicode () function with the encoding name as the second argument.

>>> unicode ('\xec3\xad\xc3\xb6\xc3\xbc', 'utf-8'")
u'\xed4\xf6\xfc'

3.1.4 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the /ist,
which can be written as a list of comma-separated values (items) between square brackets. Lists might contain items
of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]
>>> squares
(1, 4, 9, 16, 25]

Like strings (and all other built-in sequence type), lists can be indexed and sliced:

3.1. Using Python as a Calculator 15

Python Tutorial, Release 2.7.13

>>> squares [0] # indexing returns the item

>>> squares[—1]

25

>>> squares[-3:] # slicing returns a new 1ist
[9, 16, 25]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
new (shallow) copy of the list:

>>> squares/|:]
(1, 4, 9, 16, 25]

Lists also supports operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 xx 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes
(1, 8, 27, 64, 125]

You can also add new items at the end of the list, by using the append () method (we will see more about methods
later):

>>> cubes.append (216) # add the cube of 6
>>> cubes.append (7 ** 3) # and the cube of 7
>>> cubes

(1, 8, 27, 64, 125, 216, 343]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters

['a', 'b', 'c¢', 'd', 'e', 'f', 'g']

>>> # replace some values

>>> letters([2:5] = ['C', 'D', 'E']

>>> letters

(['a', 'b', 'Cc', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

('a', 'b', '£', 'g']

>>> # clear the 1list by replacing all the elements with an empty 1list
>>> letters[:] = []

>>> letters

[]

The built-in function 1en () also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

It is possible to nest lists (create lists containing other lists), for example:

16 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.7.13

3.2

a=['a'", '"b', 'c']

n-= [1, 2, 3]

x = [a, n]

X

', b, 'c'l, [1, 2, 31]
x[0]

14 'bll 'C']

x[0][1]

First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>>

>>>

0 U W N

Fibonacci series:
the sum of two elements defines the next
a, b=20, 1
while b < 10:
print b
a, b =Db, atb

This example introduces several new features.

The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the
right.

The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to) and ! = (not equal to).

The body of the loop is indented: indentation is Python’s way of grouping statements. At the interactive prompt,
you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input
for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement is
entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot guess
when you have typed the last line). Note that each line within a basic block must be indented by the same
amount.

The print statement writes the value of the expression(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between items, so you can format things
nicely, like this:

>>> 1 = 256%256
>>> print 'The value of i is', 1

3.2. First Steps Towards Programming 17

Python Tutorial, Release 2.7.13

The value of i is 65536
A trailing comma avoids the newline after the output:

>>> a, b =0, 1

>>> while b < 1000:
print b,
a, b ="D0b, atb

112358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

18 Chapter 3. An Informal Introduction to Python

CHAPTER
FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the i f statement. For example:

>>> x = int (raw_input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:

x =0

print 'Negative changed to zero'
elif x == 0:

print 'Zero'
elif x == 1:

print 'Single'
else:

print 'More'

More
There can be zero or more e11f parts, and the else part is optional. The keyword ‘e11i f* is short for ‘else if’, and

is useful to avoid excessive indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch or case
statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in
the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
words = ['cat', 'window', 'defenestrate']
>>> for w in words:
print w, len (w)

cat 3

19

Python Tutorial, Release 2.7.13

window 6
defenestrate 12

If you need to modify the sequence you are iterating over while inside the loop (for example to duplicate selected
items), it is recommended that you first make a copy. Iterating over a sequence does not implicitly make a copy. The
slice notation makes this especially convenient:

>>> for w in words[:]: # Loop over a slice copy of the entire 1ist.
if len(w) > 6:
words.insert (0, w)
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

4.3 The range () Function

If you do need to iterate over a sequence of numbers, the built-in function range () comes in handy. It generates lists
containing arithmetic progressions:

>>> range (10)
[OI ll 2/ 37 4/ 5/ 6/ 77 8/ 9]

The given end point is never part of the generated list; range (10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range (5, 10)

[5, 6, 7, 8, 9]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, —-40, -70]

To iterate over the indices of a sequence, you can combine range () and len () as follows:
>>> g = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):

print i, alil]
0 Mary
1 had
2 a

3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate () function, see Looping Techniques.

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

Loop statements may have an e 1 se clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.7.13

>>> for n in range (2, 10):

O 00 ~J o U b W N -

for x in range (2, n):
if n $ x == 0:
print n, 'equals', x, '*', n/x
break
else:
loop fell through without finding a factor

print n, 'is a prime number'

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 x 3
is a prime number
equals 2 x 4
equals 3 * 3

(Yes, this is the correct code. Look closely: the el se clause belongs to the for loop, not the if statement.)

When used with a loop, the el se clause has more in common with the else clause of a t ry statement than it does
that of i f statements: a t ry statement’s el se clause runs when no exception occurs, and a loop’s e 1 se clause runs
when no break occurs. For more on the t ry statement and exceptions, see Handling Exceptions.

The continue statement, also borrowed from C, continues with the next iteration of the loop:

>>> for num in range (2

Found
Found
Found
Found
Found
Found
Found

, 10):

if num % 2 == 0:
print "Found an even number", num
continue

print "Found a number", num

an even number 2
a number 3
an even number 4
a number 5
an even number 6
a number 7
an even number 8

Found a number 9

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:

pass # Busy-wait for keyboard interrupt (Ctrl+C)

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:

pass

4.5. pass Statements 21

Python Tutorial, Release 2.7.13

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(xargs):
pass # Remember to implement this!

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
"""print a Fibonacci series up to n."""
a, b=20, 1
while a < n:
print a,
a, b ="D»b, atb

>>> # Now call the function we just defined:
fib (2000)
0112 358 13 21 34 55 89 144 233 377 610 987 1597

The keyword de f introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documenta-
tion string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are tools
which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse
through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function
(unless named in a global statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object). ' When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £ (100)

0112 35813 21 34 55 89

Coming from other languages, you might object that £ib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is
called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the
only value written. You can see it if you really want to using print:

! Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.7.13

>>>

fib (0)

>>> print f£ib (0)

None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2 (n): # return Fibonacci series up to n

>>>
>>>
[0,

"""Return a list containing the Fibonacci series up to n."""
result = []
a, b=20,1
while a < n:
result.append(a) # see below
a, b ="D»b, atb
return result

£f100 = £ib2(100) # call it
£100 # write the result
i, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

4.7

The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

The statement result .append (a) calls a method of the list object result. A method is a function that
‘belongs’ to an object and is named ob j . met hodname, where ob 7 is some object (this may be an expression),
and met hodname is the name of a method that is defined by the object’s type. Different types define different
methods. Methods of different types may have the same name without causing ambiguity. (It is possible to
define your own object types and methods, using classes, see Classes) The method append () shown in the
example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to
result = result + [a], but more efficient.

More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def

ask_ok (prompt, retries=4, complaint='Yes or no, please!'):
while True:
ok = raw_input (prompt)

if ok in ('y', 'vye 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False

retries = retries - 1

if retries < 0:
raise IOError ('refusenik user')
print complaint

This function can be called in several ways:

4.7.

More on Defining Functions 23

Python Tutorial, Release 2.7.13

* giving only the mandatory argument: ask_ok (Do you really want to quit?’)
* giving one of the optional arguments: ask_ok (" OK to overwrite the file?’, 2)

e or even giving all arguments: ask_ok (OK to overwrite the file?’, 2, ’‘Come on, only
yes or no!’)

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.
The default values are evaluated at the point of function definition in the defining scope, so that
i=25

def f (arg=i):
print arg

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append (a)
return L

print f (1)
print f(2)
print £ (3)

This will print

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f (a, L=None):
if L is None:
L =[]
L.append (a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following
function:

def parrot (voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "!"

accepts one required argument (voltage) and three optional arguments (state, action, and type). This function
can be called in any of the following ways:

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.7.13

parrot (1000)
parrot (voltage=1000)

(positional argument
(
parrot (voltage=1000000, action='VOOOOOM")
(
('
('

keyword argument
keyword arguments

ST T
O I N

parrot (action='VOOOOOM', voltage=1000000) keyword arguments
parrot('a million' 'bereft of life', 'jump') positional arguments
parrot ('a thousand‘ state="pushing up the daisies') positional, 1 keyword

but all the following calls would be invalid:

parrot () # required argument missing
parrot (voltage=5.0, 'dead'") # non-keyword argument after a keyword argument
parrot (110, voltage=220) # duplicate value for the same argument

(

parrot (actor='John Cleese') # unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must
match one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function),
and their order is not important. This also includes non-optional arguments (e.g. parrot (voltage=1000) is
valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> def function(a):
pass

>>> function (0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form » xname is present, it receives a dictionary (see typesmapping) containing
all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which receives a tuple containing the positional
arguments beyond the formal parameter list. (xname must occur before *+name.) For example, if we define a
function like this:

def cheeseshop(kind, *arguments, =xxkeywords):
print "-- Do you have any", kind, "?"
print "-- I'm sorry, we're all out of", kind
for arg in arguments:
print arg
print "-" % 40
keys = sorted(keywords.keys())
for kw in keys:
print kw, ":", keywords [kw]

It could be called like this:

cheeseshop ("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="'Michael Palin',
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

-— Do you have any Limburger ?

-— I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

4.7. More on Defining Functions 25

Python Tutorial, Release 2.7.13

shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’s keys ()
method before printing its contents; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of
arguments, zero or more normal arguments may occur.

def write_multiple_items(file, separator, =xargs):
file.write (separator.join(args))

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range () function expects separate start and
stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments
out of a list or tuple:

>>> range (3, 6) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> range (xargs) # call with arguments unpacked from a 1ist
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the x-operator:

>>> def parrot (voltage, state='a stiff', action='voom'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "volts through it.",
print "E's", state, "!"

>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot (xxd)
—-— This parrot wouldn't VOOM if you put four million volts through it. E's bleedin'

4.7.5 Lambda Expressions

Small anonymous functions can be created with the 1ambda keyword. This function returns the sum of its two
arguments: lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They
are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function
definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor (n) :
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £ (0)

42

>>> £ (1)

43

26 Chapter 4. More Control Flow Tools

demise

Python Tutorial, Release 2.7.13

The above example uses a lambda expression to return a function. Another use is to pass a small function as an
argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort (key=lambda pair: pair[1l])

>>> pairs

[(4, '"four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

mmn

pass

>>> print my_function.__doc

Do nothing, but document it.

No, really, it doesn't do anything.

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style.
Most languages can be written (or more concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously
for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

» Use 4-space indentation, and no tabs.

4.8. Intermezzo: Coding Style 27

https://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 2.7.13

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

Use blank lines to separate functions and classes, and larger blocks of code inside functions.
When possible, put comments on a line of their own.
Use docstrings.

Use spaces around operators and after commas, but not directly inside bracketing constructs: a = £ (1, 2)
+ 9(3, 4).

Name your classes and functions consistently; the convention is to use CamelCase for classes and
lower_case_with_underscores for functions and methods. Always use self as the name for the
first method argument (see A First Look at Classes for more on classes and methods).

Don’t use fancy encodings if your code is meant to be used in international environments. Plain ASCII works
best in any case.

28

Chapter 4. More Control Flow Tools

CHAPTER
FIVE

DATA STRUCTURES

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append (x)
Add an item to the end of the list; equivalentto a[len(a) :] = [x].

list.extend (L)
Extend the list by appending all the items in the given list; equivalentto a[len(a) :] = L.

list.insert (i, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, o a.insert (0, x) inserts at the front of the list, and a.insert (len(a), x) is equivalent to
a.append (x).

list.remove (x)
Remove the first item from the list whose value is x. It is an error if there is no such item.

list.pop ([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop () removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that
the parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

list.index (x)
Return the index in the list of the first item whose value is x. It is an error if there is no such item.

list.count (x)
Return the number of times x appears in the list.

list.sort (cmp=None, key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted () for their
explanation).

list.reverse ()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]

>>> print a.count (333), a.count (66.25), a.count ('x'")
210

>>> a.insert (2, -1)

29

Python Tutorial, Release 2.7.13

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index (333)

1

>>> a.remove (333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse ()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort ()

>>> a

(-1, 1, 66.25, 333, 333, 1234.5]
>>> a.pop ()

1234.5

>>> a

(-1, 1, 66.25, 333, 333]

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed — they return the default None. ! This is a design principle for all mutable data structures in Python.

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append (). To retrieve an item from the top of the
stack, use pop () without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append (6)
>>> stack.append(7)
>>> stack

(3, 4, 5, 6, 7]
>>> stack.pop (

>>> stack
(3, 4, 5, 6]
>>> stack.pop ()

>>> stack.pop ()

>>> stack
[3, 4]

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in, first-
out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing
inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

! The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

30 Chapter 5. Data Structures

Python Tutorial, Release 2.7.13

>>> from collections import deque

>>> queue = deque(["Eric", "John", "Michael"])

>>> queue.append ("Terry") # Terry arrives

>>> queue.append ("Graham") # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
'Eric'

>>> queue.popleft () # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival
deque (['Michael', 'Terry', 'Graham'])

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter (), map (), and reduce ().

filter (function, sequence) returns a sequence consisting of those items from the sequence for which
function (item) is true. If sequence is a str, unicode or tuple, the result will be of the same type; oth-
erwise, it is always a 1ist. For example, to compute a sequence of numbers divisible by 3 or 5:

)

>>> def f(x): return x $ 3 == 0 or x 5 5 == 0
>>> filter(f, range (2, 25))
(3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24]

map (function, sequence) calls function (item) for each of the sequence’s items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x x*x
>>> map (cube, range(l, 11))
(1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and
is called with the corresponding item from each sequence (or None if some sequence is shorter than another). For
example:

>>> seq = range (8)

>>> def add(x, y): return x+y
>>> map (add, seq, seq)

[0, 2, 4, 6, 8, 10, 12, 14]

reduce (function, sequence) returns a single value constructed by calling the binary function function on
the first two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum
of the numbers 1 through 10:

>>> def add(x,y): return x+y

>>> reduce (add, range(l, 11))

55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the
next item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y

5.1. More on Lists 31

Python Tutorial, Release 2.7.13

return reduce (add, seq, 0)

>>> sum(range(l, 11))
55

>>> sum([])

0

Don’t use this example’s definition of sum () : since summing numbers is such a common need, a built-in function
sum (sequence) is already provided, and works exactly like this.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a subse-
quence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares = []
>>> for x in range (10) :
squares.append (x**2)

>>> squares
(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

‘We can obtain the same result with:
squares = [x**x2 for x in range (10)]

This is also equivalent to squares = map (lambda x: x*%2, range (10)),butit’s more concise and read-
able.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for
or if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and i f
clauses which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for yv in [3,1,4] if x !'= y]
((x, 3, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’s equivalent to:

>>> combs = []
>>> for x in [1,2,3]:
for vy in [3,1,4]:
if x !'= vy:
combs.append ((x, y))
>>> combs
((x, 3, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
Note how the order of the for and i f statements is the same in both these snippets.
If the expression is a tuple (e.g. the (x, y) in the previous example), it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]

>>> # create a new list with the values doubled
>>> [x*x2 for x in vec]

(-8, -4, 0, 4, 8]

>>> # filter the list to exclude n