openSUSE-KIWI Image System
Cookbook

Marcus Schifer

openSUSE-KIWI Image System: Cookbook

by Marcus Schifer

Thomas Schraitle <toms@suse.com>

Frank Sundermeyer <fs@suse.com>
Robert Schweikert <rjschwei@suse.com>

KIWT Version 7.03
Copyright © 2006-2016 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the
license version 1.2 is included in the section entitled “GNU Free Documentation License”.

For SUSE and Novell trademarks, see the Novell Trademark and Service Mark list http://www.novell.com/company/legal/trade-
marks/tmlist.html. All other third party trademarks are the property of their respective owners. A trademark symbol (®, ™ etc.)
denotes a SUSE or Novell trademark; an asterisk (*) denotes a third party trademark.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete
accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable for possible errors or the consequences
thereof.

http://www.novell.com/company/legal/trademarks/tmlist.html
http://www.novell.com/company/legal/trademarks/tmlist.html

Table of Contents

L. Concepts and BaSiCSeeeeeeiiiiieiiiiiiieieiitte ettt e e e et e e st e e e e rre e e s e are e e e e sarneeas 1
1. INEPOAUCTION .oo.eeeiiiiiiiiiiieeee ettt s s eee s s 5
1.1. What iS KIWI? ..oeiiiiiiiiiiiiiieeeeee e e eeeeietteee e e e e e e e s aeaanaeeeeeeeessssnnnsssnaneaaasaaanns 5

1.2. What does KIWIL dO?eeeeiiriiiieiiniiteeeeenteeeeeineeesesinreessssnneeesssssnneessssnnnees 6

1.3. HOW t0 US€ KIWI? ..ottt e et s e e e e 6

2, INSLAllAtioN .cooiiiiiiiiiiieeeeeeeeeeeee e e e e e e s e s araraaaeeee s 7
2.1. Installing KIWI PacKagescccccueeeiriiiiiiiiiiiiieeeeiireeeeeeietee e e e eineeee e 7

2.2. Running KIWI from a Source Checkoutccceevueeerieiiiieriniiiieeniiiiieeeneeane 7

3. Basic WOTKFIOW ..ottt 9
3.1. BUilding IMAagESccceeriiiieiiiiiiiieeieeeeeeerieeeeeee e e e e eeeirrreeeeee s s s s eeaannreeeeeeeees 9

3.2. Customizing the BOOt PrOCESSccccourrreiieririiiiiiiiteeeeeeeeeeeeceeeeeeeeeeeeeeeeens 13

3.3. Distribution-Specific Codecioviiiiiiiiiiiiiieereeeeeeeereeee s 20

4. KIWI Image DeSCIiPtiOnccccceeiiiiiiiiiiiiiiiiieieiteeeeeitteeeeeieeeeseenreee e s e sneeeeeeaas 21
4.1. The config.Xml Fileccccoiiiiiiiiiiiiiiiiteeeeeeeee et e s 22

5. Advanced Configurationcccoecccueiiiriiiieeeiiiiiieeeeitee e e e esaeeeeessreeeessans 41
5.1. IMAage CaChes ...ccooveeioiiiiiieeeeee ettt eerreree e e e e e e s aenereeeeeeesseenans 41

5.2, KIWI RAID SUPPOTT «ceeuuieiiiiiiiitinieeee ettt e e eeeteniee e e e e e eetenne e s eeeetennnneeees 42

5.3. KIWT CuStOm Partitionseeeeeeeeeuececeeee e ee 42

5.4. KIWI EnCryption SUPPOTT .ccceerreerrieemeeeeeemeeemeeeeeeennneenneennnennneenneennneeneeeeeeennennns 44

6. Maintaining Appliance IMagesccccccovuiiiiiiiiiieriiiiiieeeeieeee e e e e esreeeeeeane 45
6.1. Image Maintenance: Updating Software Packagesccccccuvreeeeeereeesseinnnnne 45

6.2. Image Maintenance: Modifying the Configurationcc.cccccceeveivveeennnnnnneen. 46

IL USECASES .eeeiiiiiiiiiiiiiiiiiiiieeieeeeeee ettt ettt ettt ettt ettt bttt bt bbb e b s be s seasssas s esee 49
7. ISO Image / LiVe SYSTEIMcccovvviuiiiiiiriiiiieiiniiiteeeesiieeeseesnreeesssssrneessssssnseessssssees 53
7.1. Building Live CD/DVD IMAZES ...uuurvrrrrererrriereeiinereeeeeeeeeeesssnnneeeeeeeeeesaasnnns 53

7.2. Building Live Images for Removable USB DevVicCescccccuvrereeerreeereennnnnnee 55

8. VMX Image / Virtual DiSKScccccccoeiiiiiiiiiiiiiiiiiiiiiicciccecctccecceeee s 57
8.1. Building VIMX IMAZESccceeerurrerreriieeerieiiiteeieiineeeeeesrreeesessnreeessessseeesssnnnes 57

8.2, VIMWATE SUPPOTT cevuuueerrererirunueeenrereeterenseesereererenssseseseeserensssessesessennsssssssssssenens 58

8.3, LVIM SUPPOTT ..eeeiiriniieeeereettieneieeereeettenaniesasseeeeennnssssssesesresnnsssssssesrnnenssssssesees 59

8.4. Extra Boot Partitioncccccuueeiiiiiiiiiiiiiiiiiiiiiiinninnenccccnnnne 59

9. DOCKET IMAZESeeeieniiiiiiiieieiieeetee ettt st e e e e e st e e e see e e e e e sneee e nne 61
9.1. Building Docker IMAaZEScccccuvrrrrreerreereeriiiiireeeeeeeeeeesesinrreeeeeeeeesssssssnnnnnnes 61

9.2. Image Configuration Detailscccceeeerrriiiieireeeeeeeennerireeeeeee e eeeeeeeeeeee 62

10. VaGrant DOXESccoooviiiiiiiiiiieieiiitteee ettt e e et e e e eare e e e senateesssasneeeeeans 63
10.1. Building Vagrant BOXESccceeeveeeerrriieteeresrinieeeeenineeeeeesnreeesessseeeesssnnnees 63

11. PXE Image / Thin CHEeNntsccccoeviiiiiiiniiiiieiirieeeeeeireeesesiee e seireeesssaraeee s 65
11.1. Building PXE IMAZESuuuvvvrrreeeerrreereriiierrteeeeeeeeesssnssssneeeeeeeesssssssssssseeeeeees 65
11.2. PXE Configuration Filescoceeviiiiiiieieiiiiiiiiiieeeeeeeeeeeeseiineeeeeeeeeeenennns 66
11.3. The PXE Client Configuration File Syntaxcccccceeeeevvuerreeeeeeerersnsssnnneeeen. 67
11.4. Hardware GTOUPINEueeeveeeeeeeererrerrrunrreeeeeeeeesssssssssseeeeeeessssssssssssssseeeeses 76

iii

openSUSE-KIWI Image System

12. OEM Image / Preload SYStemSccccoeveviiiriiieeieereeiiriiiirreeeeeeeeeeeeeinnneeeeeeeeens 81
12.1. Building an OEM System and an Installation Imagecccccceeeeeuuvneveeeennn. 81

12.2. Testing the IMAZES ...ccceeeirirrriiiiiiieieeeeeeeieerierreeeeeeeeeesessnerreeeeeeeesssssssnssnnes 82

12.3. Installation IMage FIavorsccceiieerereiieiiiieeeeeeeennsiiieneeeeeeeeseesesienneeeeeeens 82

12.4. Customizing the OEM IMAZEScceeererrrrrriiiurrrreeeeeeerersrsniirrreeeeeeeessssssnnnns 83

12.5. Network Based Installationccccccceeeeeeeeieeriiiiiineeeeeeeeeenenriiineeeeeeeeeeenns 86

13. Xen Para- and Full virtual Imagesccceecuiiriiiiiiiiiiiiiiiiieceeceeeee, 89
13.1. Building @ DOmMO IMAZEeeveereeeirieiieiiiiierierireeeeeeieeeeseeireeessesnreeesssnnee 89

13.2. Testing the DOm0 IMAZEcceeverureierrriiiieiieiiieeeeerreeeeeerrreeeeeenreeeesesannees 90

13.3. Building a Paravirtualized Xen Guest IMageccceceuveerrrviuveeernerineeernnnnne 90

13.4. Building a Fully Virtualized Xen GUESLcccccueeerrriereerinrinieeernrineeeeeennnne 90

13.5. Using the GUESt IMAZESeveerreviureeireiiiieeeeeiiieeeeeerreeeeeesrreeesesnrreesessnnnees 90

14. Creating APPLIANCESccooiiiiiiiiiiiiiiiiieeeeeeeeeeecerrree et e e e e e eesaerreeeeeeeeessssssannnnes 93
14.1. The KIWT MOELccoiiiiiiiiiiiiiieeeeeeeeeeeiiirreeeeeeeeeeessseereeeeeeeeesssssnnnnnnns 93

15. System AnalysiS/MiGrationccccceeeeeiiuiieeiniiiieeeieiiiieeeeeniteeeessnreeeesssnnneeeens 97

A, KIWI Man PAgeSccooiiiiiiieiiiiieee ettt e e ettt e s e e e et eeane e s e e eeterana s e e eeeerannaaannns 99
RIW ettt ettt e st e e st e e et e et e e ab e e e e ne e e e nteeeenreeenane 100
KIWizzCOnfiZ.Sh coveeeiiiiiie e s 108
KIWiiimMAaZES.Sh ceeeiiiiieiiiiieeeeee et e e e e e e s s e e e e e e e s e aaaaaaaees 112
KIWEITKIWIATC coeeeiiieeeeeeeeeeeee et e e e e e e s s er e e e e e e e e e s s s assnanaeaaeeessssnnnns 115

B. Setting Up a NetWork BOOt SEIVETcccoooiiiiiiiiiiiiiiiteneieeeeeee e 117
C. GINU LICEIISESeevviiieeiiiiiieiiiiirttteeeeeeeassasisssreeeeeeesssssssssssssseesessssssssssssssssseseessssssssnsnnns 119
C.1. GNU Free Documentation LiCeNnSeccccceeeeiriirireeiieereeerreeereeeeeenmeesseensneennennnes 119
IIAEX ..ottt st s s et e s s e e s e e e e nns 127

iv

Part I. Concepts and Basics

Table of Contents

1. INEPOAUCHION .coeeiiiiiiiiiiiieeecee ettt et re e e st e s re e s e e e e seseeeeenee 5
1.1. What iS KIWI? ..oeiiiiiiiiiiiiiiitteeeee e e e ceeiitreeeee e e e s e seenasasaeeeeesseessesnnnsssnneeaessessansnnnnns)
1.2. What does KIWI dO? ..ccceeiieiiriiiieeieiiieeeeeiiteeessieteeessstreeeessnsaeessssssneessssnnnaesssnns 6
1.3. HOW to US€ KIWI? ..ottt sttt e e et e 6
2, INSTALIAtION .ooiiiiiiiiiiiceecee et e e e e e et e e e e e e e e s st b e e e e e e e eess s nnnns 7
2.1. Installing KIWI PaCKaGESccceeeruiiiiriiiiiieeieiiieee it s et e e s enre e e s s eaeees 7
2.2. Running KIWI from a Source Checkoutccceereviiieiiiiiiieeiiiiieeeieieeeeeeieeeenne 7
3. BasicC WOTKEIOWccoiiiiiiiiiiiiiieieeietececiteee ettt e st e e e st e e e s st e e e e s asaeeesssnnnaeessnnns 9
3.1. BUilding IMAZESceeeeeeeiiiiiiiiiiiiieeeeeeeeeeeeiiteeeteeee e e e eeeenrrreeeeeeeesessesnnrnneeeeeaeessnnns 9
3.2. Customizing the BOOt PrOCESScccceevuuereeieeeiiiiieiiieretteeeeeeeeeeeennereeeeeeeeesesssnnnnnes 13
3.3. Distribution-Specific Codecoiiiiiiiiiiiiiiieeeeeeeeeerreeereeerreeeeeee s 20
4. KIWI Image DeSCIiPLiONcccocoiiiiiiiiiiiiiiiiiiieeeeitcee et e et e e eee e e e e s eare e e e e naneeas 21
4.1. The config.Xml Fileccc.ciiiiiiiiiiiiiiiiieeteeeetee ettt e e 22
5. Advanced Configurationcccocoviieiiiiiiiieiiniiiiee et e e e esrre e e e sesareeeeesssneeeeens 41
5.1. IMAZe CAChES ..ceeeiiiiiiiiiiiiiieeeeeeeeeecettctee e e e e e e eererreeeeee e s s e s saaenraeeeeeeeeeesssnnnnes 41
5.2, KIWI RAID SUPPOTT .eivvueeiiiiniierereneerernneretrnneeserensessersssssssrsssssersssssssrasssssrsnsssssnnnses 42
5.3. KIWI CUStOM PaArtitiOnscccceeeeeeeieeeiieiiieieieeereeeneeenee 42
5.4. KIWI ENCIryption SUPPOTT ceeeeeeeenneiiii e seee e s e e e s e e e s e e e e e e e e e eeaeaaeeeanas 44
6. Maintaining Appliance IMagescccoeevuiiiiiiiiiieiiiiiiieee et e e eereee e e esnreee e 45
6.1. Image Maintenance: Updating Software Packagesccccccceveeevurvrrreeeeeeeeennesiinnns 45
6.2. Image Maintenance: Modifying the Configurationccccceeveeeeiiiireciinnneeeeenn. 46

1 Introduction

Table of Contents

1.1, WRAL 1S KIWI? eiiveiiiiiiieeeeiiteeetteeeetteaeeeeesnesseernseseesnnssesssssssessnsssesssssssessnnssssssnessssnnnnses 5
1.2. What dOES KIWI dO? ...oievuniiiiineeeeiiieeeeieieeeeteneeeereneseetsnessseesessessnsssessnsssssssssssssnosssenns 6
1.3. HOW 0 USE KIWI? ettt ettt ettt et et et ea et ean et esesanssnsnessnsnssnssnnsnnsnnnns 6

1.1. What is KIWI?

KIWI is a command line tool, written in Perl, for building images for Linux. It supports a
variety of image formats. KIWI is used as a back-end for the appliance builder SUSE Stu-
dio [http://susestudio.com/]. It is also used to build images in the openSUSE Build Service
[http://build.opensuse.org/], among them images for all SUSE products.

Images for Linux are available in many different formats. A Linux *.iso file, that can be
burned to an optical medium to install Linux, is an image. A file used by virtualization systems
such as KVM, Xen, or VMware is an image. The installation of a Linux system on your hard
drive can be turned into an image using the dd command.

Basically, an image is a Linux system in a file. Depending on the type of the image, there
are different use cases for it. It can be used to burn an iso image to an optical medium with
which the computer can be booted. An image can also be used to run a Virtual Machine from
the *.iso file (image) stored on your hard drive. KIWI supports the following image types
and formats:

« ISO

+ Live CD/DVD

+ PXEBoot

+ Hard Disk

+ USB

* Amazon EC2 (.ami)

+ Docker

+ Google Cloud Format (. .gce)

+ KVM/Qemu (.qcow2)

http://susestudio.com/
http://susestudio.com/
http://susestudio.com/
http://build.opensuse.org/
http://build.opensuse.org/

What does KIWI do?

+ Open Virtualization Format (.ovf, .ova)
+ Vagrant (.vagrant

« VirtualBox (.vdi)

 Virtual Hard Disk (.vhd)

* VMware (.vmdk)

* XEN

1.2. What does KIWI do?

KIWI allows you to configure, build, and deploy your own operating system images in a variety
of formats. The KIWI workflow is divided into two distinct stages. For a detailed description
of this process refer to Chapter 3, Basic Workflow.

1. Preparation. Create a root directory holding the contents of the new file system. In-
stall the required packages from a software package source such as the installation me-
dia for SUSE Linux Enterprise Server, or an online repository. Create an image descrip-
tion file, (config.xml) and optionally apply customizations. This operation results in the
“unpacked root tree”.

2. Creation. The image itself is created using the unpacked root tree created in the pre-
vious step. The image creation process does not require user interaction, but can be fine-
tuned by modifying the images . sh script that is called during the creation process.

1.3. How to use KIWI?

KIWI is a command line tool that is invoked with the kiwi command in your shell. KIWI needs
to be executed as the root user, as administrative privileges are required for many operations
that need to take place to create an image. Therefore, when using KIWI you need to be aware
of what you are doing and a certain amount of caution is in order. Running KIWI on your
system is not inherently dangerous to your system, just keep in mind that you are running
as the root user.

The two phases of the image creation process outlined in Section 1.2, “What does KIWI do?”
can be started with the commands kiwi --prepare for the first step and kiwi --create for
the second step. For convenience KIWI also has the --build that combines the prepare and
create steps.

2 Installation

Table of Contents

2.1. Installing KIWT PACKAZESceeeeeereriererriiiiiiteeeeeeeeeneniiieeeeeeeeeeesesssssssnseseeeeeessssssssnsnnssnnes 7
2.2. Running KIWI from a Source CheCKOULcceeeereeerreriiiirreeeeeeeeeenneiieeeeeeeeeeeeesssssnnnns 7

2.1. Installing KIWI Packages

KIWI is shipped with all SUSE distributions, but not installed by default. With SUSE Linux
Enterprise 11, KIWI is included in the software development kit (SDK), not the main installa-
tion media. A minimum KIWI installation requires installing the kiwi package and at least one
package containing the boot descriptions for the various image types:

kiwi-desc-isoboot: Live ISO boot templates

kiwi-desc-netboot: PXE network boot templates
kiwi-desc-oemboot: Expandable Virtual Machine boot templates
kiwi-desc-vmxboot: Virtual Machine boot templates

It is also recommended to install the package kiwi-doc containing the documentation. For a
complete list of KIWI packages run the command zypper se kiwi.

2.1.1. Installing the Latest Version Available

KIWTI is an active project and new releases are published regularly. Packages with the latest
KIWI version for all SUSE distributions that are actively maintained can be obtained from
the Virtualization:Appliances repository at http://download.opensuse.org/repositories/Virtu-
alization:/Appliances/.

2.2. Running KIWI from a Source Check-
out

KIWI is developed and maintained in a repository on GitHub. You can clone the source code
using the following command.

git clone https://github.com/openSUSE/kiwi.git

Before running KIWI make sure all its dependencies are fullfilled. Get a list of required pack-
ages by running the following command in the checkout directory (kiwi/):

awk '/BuildRequires:/ { print $2 | "sort" }' rpm/kiwi.spec

http://download.opensuse.org/repositories/Virtualization:/Appliances/
http://download.opensuse.org/repositories/Virtualization:/Appliances/

Running KIWI from
a Source Checkout

Once all dependent packages are installed run the test suite from the checkout directory as
follows

make test

If all tests pass, all dependencies are fullfilled and KIWI can be run with from the checkout
directory with the following command:

./kiwi

To update to the latest version available, run git pull from the KIWI checkout directory.

3 Basic Workflow

Table of Contents

3.1. BUIlding IMAZESeeveeeeerriiiiiiiiiiiiteeeeeeeeeeriteeeeeeeeeeeeseaesrrreeeeeeesesssssnnnnraeeeeessssssssssnnsnnes 9
3.2. Customizing the BOOt PIOCESSccceiiierreeriueiirieeeeeeeeneeiiiieeeeeeeeeeeeesessensrreeeeeesssessssnnnnes 13
3.3. Distribution-Specific COAEcoiiiiiiiiiiiiiiiiiiieieie e eee e e e ee s s s s s e e s e eaeaaaeeas 20

Installation of a Linux system generally occurs by booting the target system from an installa-
tion source such as an installation CD/DVD, a live CD/DVD, or a network boot environment
(PXE). The installation process is often driven by an installer that interacts with the user to
collect information about the installation. This information generally includes the software to
be installed, the timezone, system user data, and other information. Once all the information
is collected, the installer installs the software onto the target system using packages from the
software sources (repositories) available. After the installation is complete the system usually
reboots and enters a configuration procedure upon start-up. The configuration may be fully
automatic or it may include user interaction.

A system image (usually called “image”), is a complete installation of a Linux system within
a file. The image represents an operational system and—optionally contains the “final” con-
figuration.

The behavior of the image upon deployment varies depending on the image type and the image
configuration since KIWI allows you to completely customize the initial start-up behavior of
the image. Among others, this includes images that

+ can be deployed inside an existing virtual environment without requiring configuration at
start-up.

+ automatically configure themselves in a known target environment.
« prompt the user for an interactive system configuration.

The image creation process with KIWI is automated and does not require any user interaction.
The information required for the image creation process is provided by the primary configu-
ration file named config.xml. In addition, the image can optionally be customized using the
config.sh and images. sh scripts and by using an overlay tree (directory) called “root”.

Previous Knowledge

This manual assumes that you are familiar with the general concepts of Linux, includ-
ing the boot process, and distribution concepts such as package management.

3.1. Building Images

The Prepare Step

KIWI creates images in a two step process. The first step, the prepare operation, generates a
so-called unpacked image tree (directory) using the information provided in the config.xml
configuration file. The config.xml file is part of the configuration directory (tree) that describes
the image to be created by KIWI.

The second step, the create operation, creates the packed image or image in the specified
format based on the unpacked image and the information provided in the config.xml con-
figuration file.

Figure 3.1. Image Creation Architecture

Package Source

Image Description / Unpacked Image

Packed Image o

Serveit...

(1) Unpacked Image
Encapsulated system reachable via chroot

(2) Packed Image
Encapsulated system reachable via kernel file system/extension drivers such as loopback
mounts, etc.

3.1.1. The Prepare Step

The creation of an image with KIWI is a two step process. The first step is called the prepare
step and it must complete successfully before the second step, the create step can be executed.

During the prepare step, KIWI creates an unpacked image, also called “root tree”. The new
root tree is created in a directory specified on the command line with the - - root argument
or the value of the defaultroot element in the config.xml file. This directory will be the
installation target for software packages to be installed during the image creation process.

For package installation, KIWI relies on the package manager specified with the packageman-
ager element in the config.xml file. KIWI supports the following package managers: smart,
zypper (default), yum and apt.

10

The Prepare Step

The prepare step consists of the following substeps::

1.

4.

S.

Create Target Root Directory.

KIWI will exit with an error if the target root tree already exists to prevent accidental dele-
tion of an existing unpacked image. Using the - - force-new- root command line argument
will force kiwi to delete the existing target directory and create a new unpacked image in
a new directory with the same name.

. Install Packages.

Initially KIWI configures the package manager to use the repositories specified in the con-
figuration file and/or the command line. Following the repository setup the packages spec-
ified in the bootstrap section of the configuration file are installed in a temporary work-
space external to the target root tree. This establishes the initial environment, to support
the completion of the process in chroot setting. The essential packages to specify as part of
the bootstrap environment are the filesystem and glibc-locale packages. The dependency
chain of these two packages is sufficient to populate the bootstrap environment with all
required software to support the installation of packages into the new root tree.

The installation of software packages through the selected package manager may install
unwanted packages. Removing such packages can be accomplished by marking them for
deletion in the configuration file. To do so specify a configuration entry like:

<package type="delete">package to be deleted</package>

. Apply The Overlay Tree.

After the package installation is complete, KIWI will apply all files and directories present
in the overlay directory named root to the target root tree. Files already present in the target
root directory will be overwritten, others will be added. This allows you to overwrite any
file that was installed by one of the packages during the installation phase.

Apply Archives.

Any archive specified with the archive element in the config.xml file is applied in the
specified order (top to bottom) after the overlay tree copy operation is complete. Files
and directories will be extracted relative to the top level of the new root tree. As with the
overlay tree, it is possible to overwrite files already existing in the target root tree.

Execute the User-defined Script config.sh.

At the end of the preparation stage the script named config.sh is executed if present. It is
executed on the top level of the target root tree. The script's primary function is to complete
the system configuration, for example by activating services. For a detailed description of
pre-defined configuration functions consult the kiwi::config.sh(1) man page.

. Manage The New Root Tree.

The unpacked image directory is a directory, as far as the build system is concerned and you
can manipulate the content of this directory according to your needs. Since it represents
a system installation you can “chroot” into this directory for testing purposes. The file
system contains an additional directory named /image that is not present in a regular
system. It contains information KIWI requires during the create step, including a copy of
the config.xml file.

Do not make any changes to the system, since they will get lost when re-running the pre-
pare step again. Whats more, you may introduce errors that will occur during the create
step, that are difficult to track. The recommended way to apply changes to the unpacked
image directory is to change the configuration and re-run the prepare step.

11

The Create Step

3.1.2. The Create Step

The successful completion of the prepare step is a prerequisite for the create step. It ensures
the unpacked root tree is complete and consistent. Creating the packed, or final, image is done
in the create step. Multiple images can be created using the same unpacked root tree. It is,
for example, possible to create a self installing OEM image and a virtual machine image from
a single unpacked root tree. The only prerequisite is that both image types are specified in
the config.xml before the prepare step is executed.

During the create step the following major operations are performed by kiwi:

1. Execute the User-defined Script images.sh .
At the beginning of the image creation process the script named images.sh is executed if
present. It is executed on the top level of the target root tree. The script is usually used to
remove files that are no needed in the final image. For example, if an appliance is being
built for a specific hardware, unnecessary kernel drivers can be removed using this script.
Consult the kiwi::images.sh(1) man page for a detailed description of pre-defined functions
available in the images. sh script.

2. Create Requested Image Type.
The image types that can be created from a prepared image tree depend on the types spec-

ified in the image description config.xml file. The configuration file must contain at least
one type element. The figure below shows the currently supported image types:

Figure 3.2. Image Types

Live Image o

config.xml
9 —— = Disk Image 9

OEM Image 9

PXE Image e
(1) Live Image

For CDs, DVDs or flash disks.

12

Customizing the Boot Process

(2) Disk Image
Virtual system disk that can be used in virtual environments such as VMware, Xen,
Amazon Cloud, KVM, and others. Depending on the format a guest configuration file
is created.

(3) OEM Image
Preload system for install media CD/DVD or flash disk.

(4) PXE Image
Network boot image. KIWI also provides the bootp environment via the package ki-
wi-pxeboot.

Detailed information, including step-by-step instructions on building specific images can be
found in Part II, “Usecases”. That part of the manual explains how to build a “Just enough
Operation System” (JeOS) image from a KIWI template for all supported image types.

3.2. Customizing the Boot Process

Most Linux systems use a special boot image to control the system boot process after the
system firmware, BIOS or UEFI, hands control of the hardware to the operating system. This
boot image is called the initrd. The Linux kernel loads the initrd, a compressed cpio initial
RAM disk, into the RAM and executes init or, if present, linuxrc.

Depending on the image type, KIWI creates the boot image automatically during the create
step. Each image type has its own description for the boot image. Common functionality is
shared between the boot images through a set of functions. The boot image descriptions follow
the same principles as the system image descriptions, KIWI ships with pre-defined boot image
descriptions.

Boot Image Descriptions provided by KIWI

The boot image descriptions provided by KIWI cover almost all use cases. Creating cus-
tom boot descriptions should not be necessary, unless you have special requirements.

13

Customizing the Boot Process

Figure 3.3. Image Descriptions

Boot Image
(initrd / kernel)

System Image @

(1) Boot Image
Boot image descriptions are provided by KIWI, use is recommended but not required.

(2) System Image
The system image description is created by the KIWI user, or a KIWI provided template
may be used.

The boot image descriptions are stored in the /usr/share/kiwi/image/*boot directories.
KIWI selects the boot image based on the value of the boot attribute of the type element. The
attribute value is expected in the general form of boottype/distribution . For example to
select the OEM boot image for SLES version 12 the element would look like the following:

<type boot="oemboot/suse-SLES12">
Difference Between Boot Image and System Image Descriptions

The boot image description only represents the initrd used to boot the system and as such
serves a limited purpose. The boot image descriptions is used to build the boot image
independently from the system image. Usually a pre-defined boot image descriptions
shipped with KIWI is used.

The system image description is used to build the image running on the target system.
It is manually created and usually tailor-made for a specific use case.

14

Boot Image Hook-Scripts

De-activating Hooks at Boot Time

The execution of hooks can be globally deactivated by passing the following variable
to the kernel command line:

KIWI_FORBID HOOKS=1

3.2.1. Boot Image Hook-Scripts

All KIWI created boot images contain kiwi boot code that gets executed when the image is
booted for the first time. This boot code differs from image type to image type. It provides
hooks to execute user defined shell scripts.

These scripts may extend the firstboot process and are expected to exist inside the boot image
in a specific location with specific names. The following instructions explain the concept of
hook scripts, which is common to all image types, and how to include the scripts in the initrd.

3.2.1.1. Script Types

Hook scripts are executed using a predetermined name that is hard coded into the kiwi boot
code. This name is extended using the . sh extension and differs by boot image type. Therefore,
the boot script naming in the archive must be exact. Boot scripts are sourced in the kiwi boot
code. This provides the hook script access to all variables set in the boot environment. This
also implies that no separate shell process is started and the boot scripts do not need to have
the executable bit set. Encoding the interpreter location with the #! comment is superfluous.

The following list provides information about the hook names, timing of the execution, and
the applicable boot image.

handleSplash
This hook is called prior to any dialog/exception message or progress dialog. The hook
can be used to customize the behavior of the splash screen. KIWI automatically hides a
plymouth or kernel based splash screen if there is only one active console.

init
This hook is called before udev is started. It exists only for the PXE image type.

preconfig|postconfig
The hooks are called before and after the client configuration files (CONF contents) are
setup, respectively. The hooks only exist for the PXE image type.

predownload|postdownload
The hooks are called before and after the client image receives the root file system, re-
spectively. The hooks only exist for the PXE image type.

preImageDump|postImageDump
The hooks are called before and after the install image is dumped on the target disk,
respectively. The hooks only exist for the OEM image type.

preLoadConfiguration|postLoadConfiguration
The hooks are called before and after the client configuration file config.MAC is loaded,
respectively. The hooks only exist for the PXE image type.

premount|postmount
The hooks are called before and after the client root file system is mounted, respectively.
The hooks only exist for the PXE image type.

15

Boot Image Hook-Scripts

prenetwork|postnetwork
The hooks are called before and after the client network is setup, respectively. The hooks
only exist for the PXE image type.

prepartition|postpartition
The hooks are called before and after the client creates the partition table on the target
disk, respectively. The hooks only exist for the PXE image type.

preprobe|postprobe
The hooks are called before and after the loading of modules not handled by udev, respec-
tively. The hooks only exist for the PXE image type.

preswap|postswap
The hooks are called before and after the creation of the swap space, respectively. The
hooks only exist for the PXE image type.

preactivate
This hook is called before the root file system is moved to /. The hook only exists for the
pxe image type.

preCalllnit
This hook is called before the initialization process, init or systemd, is started. At call time
the root file system has already been moved to /.. The hook only exists for the OEM and
VMX image types.

preRecovery|postRecovery
This hook is called before and after the recovery code is processed. At call time of preRe-
covery the recovery partition is not yet mounted. At call time of postRecovery the recovery
partition is still mounted on /reco-save. The hook only exists for the OEM image type.

preRecoverySetup|postRecoverySetup
This hook is called before and after the recovery setup is processed. At call time of preRe-
coverySetup the recovery partition is not yet mounted. At call time of postRecoverySetup
the recovery partition is still mounted on /reco-save. The hook only exists for the OEM
image type.

preException
This hook is called before a system error is handled. The error message is passed as para-
meter. This hook can be used for all image types.

preHWdetect|postHWdetect
The hooks are called before and after the install image boot code detects the possible target
storage device(s). The hooks only exist for the OEM image type.

preNetworkRelease
This hook is called before the network connection is released. The hook only exists for
the PXE image type.

3.2.1.2. Including Hook Scripts into the Boot Image

All hook scripts must be located in the kiwi-hooks directory at the top level of the initrd. The
best approach to including the hook scripts in the initrd is to create an archive of a kiwi-hooks
directory that contains the custom boot scripts.

mkdir kiwi-hooks
place all scripts inside kiwi-hooks
tar -cf kiwi-hooks.tgz kiwi-hooks/

16

FAQ: Boot Image
Customization

The TAR archive must be located at the top level of the image description directory, this is
the same level that contains the config.xml file.

Hook scripts are only executed from within kiwi's boot code and must therefore be part of the
KIWI created boot image. Including the content of a TAR archive in the initrd is accomplished
by setting the value of the bootinclude attribute of the archive element to true in the
config.xml file as shown below:

<packages type="image">

<archive name="kiwi-hooks.tgz" bootinclude="true"/>
</packages>

The concept of including an archive in the boot image follows the same concepts described
for the system image previously. To use an archive in a pre-built boot image the archive must
be part of the boot image description in which case it is not necessary to set the bootinclude
attribute.

3.2.1.3. Post Commands

In addition to the hook script itself it is also possible to run a post command after the hook
script was called. This allows to run commands tied to a hook script without changing the
initrd and thus provides a certain flexibility when writing the hook. The post command exe-
cution is based on variables that can be passed to the kernel command line. The following
rules for the processing post commands apply:

1. Command post processing needs to be activated within the corresponding hook script. this
is achieved by setting the variable KIWI ALLOW HOOK CMD HOOKNAME to 1. For example:

KIWI_ALLOW HOOK_CMD_preHWdetect=1

This will activate the post command execution for the preHWdetect hook. If this variable
is not set, the post command will not be executed.

2. The corresponding variable KIWI HOOK CMD HOOKNAME needs to passed to the Kernel com-
mand line. Its value contains the command that is to be executed, for example:

KIWI HOOK CMD preHWdetect="1s -1"

This will cause the preHWdetect hook to call Is -1 at the end of the hook script code.

Disable Post Command Execution at Boot Time

To disable all post commands for the current boot process pass the following variable
to the Kernel command line:

KIWI FORBID HOOK CMDS=1

3.2.2. FAQ: Boot Image Customization

The KIWI provided boot image descriptions should satisfy the requirements for a majority of
image builds and the environments in which these images are deployed. In case a customized
boot image is needed, KIWI provides appropriate configuration options in config.xml.

Using these options allows users to base the boot image on the KIWI provided descriptions
rather than having to define a configuration from scratch (however, this is possible if wanted).

17

FAQ: Boot Image
Customization

The following question and answer section provides solutions to the most common scenarios
that require a customized boot image.

Q:
A:

Why is the boot image so big? Can I reduce its size ?

KIWTI includes all required tools and libraries to boot the image under all circumstances
in all target environments supported by the image type. In case the target environment
is well defined it is possible to remove libraries, drivers and tools not needed in the
target environment.

This will decrease the size of the initrd and will also decrease boot time. Removing files
in the boot image is accomplished by adding a strip section to the system image in the
config.xml file, with the type attribute set to delete, as shown below:

<strip type="delete">
<file name="..."/>
</strip>

Removing files that are needed may result in an image that cannot be booted.
Can drivers be added to the boot image?

KIWTI uses a subset of the Kernel. Therefore drivers shipped with the Kernel that have
not been included by the KIWI build process, can be added. Do so by adding a drivers
section to the system image configuration file config.xml, as follows:

<drivers>
<file name="drivers/..."/>
</drivers>

If the driver is provided by a package, the package itself needs to be specified as part
of the image package section. Additionally, it must be marked for boot image inclusion
by setting the value of the bootinclude attribute of the package element to true, as
follows:

<packages type="image"/>
<package name="PACKAGE" bootinclude="true"/>
</packages>

How to add missing tools or libraries?

Additional software can be added to the boot image with the use of the bootinclude
attribute of the package or the archive element. At the end of the boot image creation
process kiwi attempts to reduce the size of the boot image by removing files that are not
part of a known list of required files or their dependencies.

The list of required files is hard coded in the /usr/share/kiwi/mod-
ules/KIWIConfig.txt file. If you added files to the boot image that are needed for your
specific use case, you need to instruct kiwi to not strip them from the image. This is
accomplished by adding a strip section to the system image config.xml file, with the
type attribute set to tools, as follows:

<strip type="tools"/>
<file name="FILENAME" />
</strip>

The removal/preservation of files is name-based only, so you do not need to specify a
complete path, but rather the file name.

18

Boot Parameters

Q: Isit possible to add boot code?

Yes, as described in the Section 3.2.1, “Boot Image Hook-Scripts” section above, KIWI
supports the execution of boot code at various times for various image types using hook
scripts.

Q: Isit possible to include completely customized boot code?

A: No. In cases where the provided hooks are insufficient and the KIWI provided boot
code needs to be replaced completely, it is necessary to create a custom boot image
description. In this case, all parts of the boot image description must be created by the
user. It is best to use one of the KIWI provided boot descriptions as a template.

Q: My customized boot image refuses to boot. How to debug?

An initrd created by KIWI that is based on one of the KIWI- provided boot image de-
scriptions recognizes kernel parameters that are useful for debugging purposes, in case
the image does not boot. These parameters may not work if the image contains a custom
boot image where the kiwi boot code has been completely.

3.2.3. Boot Parameters

A KIWI created initrd based on one of the KIWI provided boot image descriptions recognizes
kernel parameters that are useful for debugging purposes, should the image not boot. These
parameters may not work if the image contains a custom boot image where the kiwi boot code
has been replaced, and the parameters are not recognized after the initial KIWI created initrd
has been replaced by the "regular" distribution created initrd after the initial boot of the image.

If the boot process encounters a fatal error, the default behavior is to reboot the system after
120 seconds. Prevent this behavior by specifying

kiwidebug=1

on the Kernel command line. With that parameter set to 1, the system will enter a limited shell
environment in case of a fatal during boot. The shell contains a basic set of commands. The
first place to look for debugging information should be the boot log file /var/log/kiwi.boot.

In addition to the shell, KIWI also starts the dropbear SSH server if the environment is suitable.
Support for dropbear can be added to the netboot and oemboot (in PXE boot mode) boot
images. For isoboot and vmxboot boot images there is no remote login support because they
do not set up a network. It is required that the repository setup provides dropbear.

To have dropbear installed as part of the boot image the following needs to be added to the
system image configuration:

<packages type="image"/>
<package name="dropbear" bootinclude="true"/>
</packages>

It might be useful to also include a tool for copying remote files, such as scp or
rsync into the boot image. Note that the required packages need to be provided
by the repositories configured. To include rsync, for example, add the line <pack-
age name="rsync" bootinclude="true"/> to the listing above.

To access the boot image via SSH it is required to provide a public key on the PXE server in the
directory: SERVER-ROOT/KIWI/debug ssh.pub. KIWI exclusively searches for that file name,

19

Distribution-Specific Code

so it is required to name it debug ssh.pub. SERVER-ROOT depends on what server type was
configured to download the image. By default this is done via TFTP. In that case SERVER-ROOT
translates to /srv/tftpboot ion the PXE server. Adjust the path accordingly if having used
HTTP or FTP.

Adding more than one public key to file is possible, the file uses the same format as the
common SSH file “authorized_keys”. If a public key was found you can login as follows:

ssh root@IP-ADDRESS

In case rsync is available, you can copy the KIWI boot log to your local machine as follows:

RSYNC RSH='ssh -1 root'
rsync -avz <ip>:/var/log/boot.kiwi

3.3. Distribution-Specific Code

KIWI is designed to be distribution-independent. However, Linux distributions differ from
each other, primarily in the package management area and in the area of creation and com-
position of the boot image. Within the KIWI code base major areas of Linux distribution dif-
ferences are isolated into specific regions of the code. The remainder of the code is common
and distribution- independent.

KIWI-provided functions that are distribution-specific contain the distribution name as a pre-
fix, such as suseStripKernel. Scripts that are part of the boot code and are distribution-spe-
cific are identified by a prefix of the distribution name followed by a “-”, for example suse-
linuxrc. When KIWI creates a boot image for a SUSE distribution the suse-linuxrec file from
the boot description is used as the linuxrc file that the Linux kernel calls.

With this design it is possible to maintain distribution-specific code in the project while also
providing explicit hints to the user when distribution specific code is being used. The imple-
mentation of SUSE-specific code can be used as a guideline to support other distributions.

20

4 KIWI Image Description

Table of Contents

4.1. The config. XMl Fileccccuuiiiiiiiiiiiiiiiieee ettt e et e e e e e 22

To be able to create an image with KIWI, a so called image description must be created. The
image description is represented by a directory which needs to contain at least one file named
config.xml or *.kiwi. A good start for such a description can be found in the examples
provided in /usr/share/doc/packages/kiwi/examples.

2015-07-24 - fs: TODO

1. Explain templates (packages, overview of templates, where to find them, how to use them, how
to customize)

2. How to manually validate, editor support (loading schema or DTD)

3. Shorten, restructure for a better readability

4. Point to schema description, explain how to use/read it

Figure 4.1. Image Description Directory

config.xml I

optional
images.sh
config.sh
root/
config-yast-firstboot.xml
config-yast-autoyast.xml
config-cdroot.tgz
config-cdroot.sh

config/

The following additional information is optional for the process of building an image, but
most often mandatory for the functionality of the created operating system:

images.sh
Optional configuration script while creating the packed image. This script is called at
the beginning of the image creation process. It is designed to clean-up the image system.
Affected are all the programs and files only needed while the unpacked image exists.

21

The config.xml File

config.sh
Optional configuration script while creating the unpacked image. This script is called at the
end of the installation, but before the package scripts have run. It is designed to configure
the image system, such as the activation or deactivation of certain services (insserv). The
call is not made until after the switch to the image has been made with chroot.

root
Subdirectory that contains special files, directories, and scripts for adapting the image
environment after the installation of all the image packages. The entire directory is copied
into the root of the image tree using cp -a.

config-yast-autoyast.xml
Configuration file which has been created by AutoYaST. To be able to create such an
AutoYaST profile, run:

yast2 autoyast

Once you have saved the information from the AutoYaST UI as config-yast-
autoyast.xml file in your image description directory KIWI will process on the file and
setup your image as follows:

1. While booting the image YaST is started in AutoYaST mode automatically

2. The AutoYaST description is parsed and the instructions are handled by YaST. In other
words the system configuration is performed

3. If the process finished successfully the environment is cleaned and AutoYaST won’t be
called at next reboot.

config-cdroot.tgz
Archive which is used for ISO images only. The data in the archive is uncompressed and
stored in the CD/DVD root directory. This archive can be used, for example, to integrate
a license file or information directly readable from the CD or DVD.

config-cdroot.sh
Along with the config-cdroot.tgz one can provide a script which allows to manipulate
the extracted data.

config/
Optional subdirectory that contains Bash scripts that are called after the installation of
all the image packages, primarily to remove the parts of a package that are not needed
for the operating system. The name of the Bash script must resemble the package name
listed in the config.xml.

4.1. The config.xml File

The mandatory image definition file is divided into different sections which describes infor-
mation like the image name and type as well as the packages and patterns the image should
consist of.

The following information explains the basic structure of the XML document. When KIWI is
executed, the XML structure is validated by the KIWI RELAX NG based schema. For details
on attributes and values please refer to the schema documentation file at /usr/share/doc/
packages/kiwi/kiwi.rng.html.

22

image Element

4.1.1. image Element

<image schemaversion="6.2" name="iname"
displayname="text"
kiwirevision="number"
id="10 digit number">
<l-- ... -->

</image>

The image definition starts with an image tag and requires the schema format at version 2.0.
The attribute name specifies the name of the image which is also used for the filenames created
by KIWI. Because we don’t want spaces in filenames the name attribute must not have any
spaces in its name.

The following optional attributes can be inserted in the image tag:

displayname
Allows setup of the boot menu title for the selected boot loader. So you can have suse-
SLED-foo as the image name but a different name as the boot display name. Spaces are
not allowed in the display name because it causes problems for some boot loaders and
kiwi did not take the effort to separate the ones which can display them correctly from
the ones which can't

kiwirevision
specifies a KIWI git revision number which is known to build a working image from this
description. If the KIWI git revision doesn't match the specified value, the process will exit.
The currently used git revision can be queried by calling kiwi - -version.

id
sets an identification number which appears as file /etc/ImagelID within the image.

Inside the image section the following mandatory and optional subelements exists. The sim-
plest image description must define the elements description, preferences, repository
and packages (at least one of type="bootstrap").

4.1.2. description Element

<description type="system">
<author>an author</author>
<contact>mail</contact>
<specification>short info</specification>
</description>

The mandatory description section contains information about the creator of this image
description. The attribute type could be either of the value system which indicates this is a
system image description or at value boot for boot image descriptions.

4.1.3. profiles Element

<profiles>
<profile name="name" description="text"/>
<l-- ... -->

</profiles>

The optional profiles section lets you maintain one image description while allowing for
variation of the sections packages and drivers that are included. A separate profile element

23

preferences Element

must be specified for each variation. The profile child element, which has name and de-
scription attributes, specifies an alias name used to mark sections as belonging to a profile,
and a short description explaining what this profile does.

To mark a set of packages/drivers as belonging to a profile, simply annotate them with the
profiles attribute. It is also possible to mark sections as belonging to multiple profiles by
separating the names in the profiles attribute with a comma. If a packages or drivers tag
does not have a profiles attribute, it is assumed to be present for all profiles.

4.1.4. preferences Element

<preferences profiles="name">
<version>1.1.2</version>
<packagemanager>zypper</packagemanager>
<type image="name" ...>
<machine|oemconfig|pxedeploy|size|split|systemdisk]|vagrantconfig>
</type>
</preferences>

The mandatory preferences section contains information about the supported image type(s),
the used package manager, the version of this image, and optional attributes. The image ver-
sion must be a three-part version number of the format: Major.Minor.Release. In case of
changes to the image description the following rules should apply:

« For smaller image modifications that do not add or remove any new packages, only the
release number is incremented. The config.xml file remains unchanged.

« For image changes that involve the addition or removal of packages the minor number is
incremented and the release number is reset.

+ For image changes that change the size of the image file the major number is incremented.

By default, KIWI uses the zypper package manager but it is also possible to use the non SUSE
native package manager called smart.

In general the specification of one preferences section is sufficient. However, it’s possible to
specify multiple preferences sections and distinguish between the sections via the profiles
attribute. Data may also be shared between different profiles. Using profiles it is possible to,
for example, configure specific preferences for OEM image generation. Activation of a given
preferences during image generation is triggered by the use of the - -add-profile command
line argument.

For each preferences block at least one type element must be defined. It is possible to specify
multiple type elements in any preferences block. To set a given type description as the
default image use the boolean attribute primary and set its value to true. The image type to
be created is determined by the value of the image attribute. The following list describes the
supported types and possible values of the image attribute:

image="1xc|docker"
Use the Ixc or docker image type to build a linux container image. For additional infor-
mation refer to the Chapter 9, Docker images chapter.

image="[filesystem]"
Use one of the following image types to build a plain filesystem image. This will create
a file containing the data in the specified filesystem and you can loop mount the image
to view the contents e.g image ="ext3":

24

preferences Element

* ext2

+ ext3

+ ext4

* btrfs

+ squashfs
« xfs

image="tbz"
Use the tbz image type to just pack the unpacked image tree into a tarball.

image="cpio"
Use the cpio image type to specify the generation of a boot image (initrd). When generating
a boot image, it is possible to specify a specific boot profile and boot kernel using the
optional bootprofile="default" and bootkernel="std" attributes.

A boot image should group the various supported kernels into profiles. If the user chooses
not to use the profiles supplied by KIWI, it is required that one profile named std be
created. This profile will be used if no other bootkernel is specified. Further it is required
to create a profile named default. This profile is used when no bootprofile is specified.

It is recommended that special configurations that omit drivers, use special drivers and/
or special packages be specified as profiles.

The bootprofile and bootkernel attribute are respected within the definition of a system
image. Us the attribute and value type="system" of the description element to specify
the creation of a system image. The values of the bootprofile and bootkernel attributes are
used by KIWI when generating the boot image.

image="iso"
Specify the key-value pair image ="is0" to generate a live system suitable for deployment
on optical media (CD or DVD). Use the boot="isoboot/suse-*" attribute when gener-
ating this image type to select the appropriate boot image for optical media. In addition
the optional flags attribute may be set to the following values with the effects described
below:

seed
Creates a btrfs based compressed read-only filesystem which allows write operations
into a btrfs seed device.

overlay
Creates a squashfs based compressed read-only filesystem which is combined with a
write space via the overlayfs filesystem. overlayfs is part of the kernel since version 3.7

compressed
Creates a split ext3 plus squashfs filesystem and combines them via a symlink system
to a complete system it is recommended to specify a split section as a child of this
type element.

If the flags attribute is not used the filesystem will be squashfs compressed for /bin /boot /
lib /1ib64 /opt /sbin and /usr. The rest of the filesystem is packed into a tmpfs and linked
via symbolic links

25

preferences Element

image="oem"

Use this type to create a virtual disk system suitable in a preload setting. In addition
specify the attributes filesystem, and boot ="oemboot/suse-*" to control the filesystem
used for the virtual and to specify the proper boot image. Using the optional format
attribute and setting, the value to iso or usb will create self installing images suitable for
optical media or a USB stick, respectively. Booting from the media will deploy the OEM
preload image onto the selected storage device of the system. It is also possible to configure
the system to use logical volumes. Use the optional lvm attribute and specify the logical
volume configuration with the systemdisk child element. The default volume group name
is kiwiVG. Further configuration of the image is performed using the appropriate *config
child block.

image ="pxe"

Creating a network boot image is supported by KIWI with the image ="pxe" type. When
specifying the creation of a network boot image use the filesystem and boot ="netboot/
suse-*" attributes to specify the filesystem of the image and the proper boot image. To
compress the image file set the compressed boolean attribute to true. This setting will
compress the image file and has no influence on the filesystem used within the image. The
compression is often use to support better transfer times when the pxe image is pushed to
the boot server over a network connection. The pxe image layout is controlled by using
the pxedeploy child element.

image="split"

The split image support allows the creation of an image as split files. Using this technique
one can assign different file systems and different read-write properties to the different
sections of the image. The oem, pxe, usb, and vmx types can be created as a split system
image. Use the boot ="oem|netboot|usb|vmx/suse-*" attribute to select the underlying
type of the split image. The attributes fsreadwrite, fsreadonly are used to control the
read-write properties of the filesystem specified as the attributes value. Use the appropriate
*config child block to specify the properties of the underlying image. For example when
building a OEM based split image use the oemconfig child section.

image="vmx"

Creation of a virtual disk system is enabled with the vmx value of the image attribute.
Set the filesystem of the virtual disk with the filesystem attribute and select the appro-
priate boot image by setting boot ="vmxboot/suse-*" The optional format attribute is
used to specify one of the virtualization formats supported by QEMU, such as vindk (al-
so the VMware format) or qcow2. For the virtual disk image the optional vga attribute
may be used to configure the kernel framebuffer device. Acceptable values can be found
in the Linux kernel documentation for the framebuffer device (see Documentation/fb/
vesafb.txt). KIWI also supports the selection of the boot loader for the virtual disk ac-
cording to the rules indicated for the USB system. Last but not least the virtual disk system
may also be created with a LVM based layout by using the lvm attribute. The previously
indicated rules apply. Use the machine child element to specify appropriate configuration
of the virtual disk system.

Within the type section, there could be other optional attributes which are either universally
valid or can be used for different image types in the same way. The following list explains
these attributes:

kernelcmdline
Specifies additional kernel parameters. The following example disables kernel messages:
kernelcmdline="quiet"

26

preferences Element

mdraid
For disk based image types, aka oem and vmx, mdraid activates the creation of a software
raid image. The raid inside the image is created in degraded mode because at creation
time we only know about one disk. It's in the hand of the user to add devices to the raid
after the image runs on the target machine. The value for mdraid can be either mirroring
or striping, which means the raid level is set to RAID1 (mirroring) or RAIDO (striping).

Within the preferences section, there are the following optional elements:

showlicense
Specifies the base name of a license file which is displayed in oem images before the
installation happens. It's possible to add more showlicense sections to display more licenses
one after the other. If no such element is specified the default 'license' and 'EULA' files
are searched. The search algorithm will append the .txt or .locale.txt suffix to the license
name to form the license file name. You should make sure that you license files contains
this suffix.

rpm-check-signatures
Specifies whether RPM should check the package signature or not

rpm-excludedocs
Specifies whether RPM should skip installing package documentation

rpm-force
Specifies whether RPM should be called with - -force

keytable
Specifies the name of the console keymap to use. The value corresponds to a map file in
/usr/share/kbd/keymaps. The KEYTABLE variable in /etc/sysconfig/keyboard file is
set according to the keyboard mapping.

timezone
Specifies the time zone. Available time zones are located in the /usr/share/zonein-
fo directory. Specify the attribute value relative to /usr/share/zoneinfo. For example,
specify Europe/Berlin for /usr/share/zoneinfo/Europe/Berlin. KIWI uses this value
to configure the timezone in /etc/localtime for the image.

locale
Specifies the name of the UTF-8 locale to use, which defines the contents of the RC_LANG
system environment variable in /etc/sysconfig/language. Please note only UTF-8 lo-
cales are supported here which also means that the encoding must not be part of the
locale information. The KIWI schema validates the locale string according to the follow-
ing pattern:[a-z]1{2} [A-Z1{2}(,[a-z]{2} [A-Z]1{2})*. This means you need to spec-
ify the locale like the following example: en_US or en_US,de_DE

bootsplash-theme
Specifies the name of the bootsplash theme to use

bootloader-theme
Specifies the name of the gfxboot theme to use

defaultdestination
Used if the - -destdir option is not specified when calling KIWI

27

preferences Element

defaultroot

Used if the option - - root is not specified when calling KIWI

The type element may contain child elements to provide specific configuration information
for the given type. The following lists the supported child elements:

systemdisk

Using the optional systemdisk section it is possible to create a LVM (Logical Volume Man-
agement) based storage layout or a btrfs based layout using sub volumes. See chapter 17
for details.

By default, the volume group is named kiwiVG. It is possible to change the name of the
group by setting the name attribute to the desired name. Individual volumes within the
volume group are specified using the volume element.

The following example shows the creation of a volume named usr and a volume named
var inside the volume group systemVG.

<systemdisk name="systemVG">

<volume name="usr" freespace="100M"/>

<volume name="var" size="200M"/>
</systemdisk>

The optional attribute freespace controls the amount of unused space available after
software has been installed in the given volume. By default the available space of a created
volume is between 10% and 20%. Using the optional size attribute the absolute size of
the given volume is specified. The size attribute takes precedence over the freespace
attribute. If the specified size is insufficient, based on the estimated software install size for
the given volume, the specified value will be ignored and a volume with default settings
will be created. This implies that the volume will be 80% to 90% full.

oemconfig

2015-11-30 - fs: This whole section has also been copied to the OEM chapter By default, the
oemboot process will create or modify a swap, and / partition. It is possible to influence
the behavior by the oem-* elements explained below.

<oemconfig>
<oem-systemsize>2000</oem-systemsize>
<oem-... >

</oemconfig>

<oem-boot-title>text</oem-boot-title>
By default, the string OEM will be used as the boot manager menu entry when KIWI
creates the GRUB configuration during deployment. The oem-boot-title element
allows you to set a custom name for the grub menu entry. This value is represented
by the kiwi oemtitle variable in the initrd

<oem-bootwait>true|false</oem-bootwait>
Specify if the system should wait for user interaction prior to continuing the boot
process after the oem image has been dumped to the designated storage device (default
value is false). This value is represented by the kiwi oembootwait variable in the
initrd

<oem-inplace-recovery>true|false</oem-inplace-recovery>
Specify if the recovery archive is stored as part of the image or if the archive
is to be created at the time the image is deployed to the target storage device.
kiwi oemrecoveryInPlace variable in the initrd

28

preferences Element

<oem-kiwi-initrd>true|false</oem-kiwi-initrd>
If this element is set to true (default value is false) the oemboot boot image (initrd)
will not be replaced by the system (mkinitrd) created initrd. This option is useful when
the system is installed on removable storage such as a USB stick or a portable external
drive. For movable devices it is potentially necessary to detect the storage location
during every boot. This detection process is part of the oemboot boot image. This value
is represented by the kiwi oemkboot variable in the initrd

<oem-partition-install>true|false</oem-partition-install>
Specify if the image is to be installed into a free partition on the target storage device.
By default the value is false and Kiwi installs images to a target device which causes
data loss on the device. With oem-partition-install set to true any other settings
that have influence on the partition table, such as oem-swap are ignored. This value is
represented by the kiwi oempartition install variable in the initrd

<oem- reboot>true|false</oem- reboot>
Specify if the system is to be rebooted after the oem image has been deployed to the
designated storage device (default value is false). This value is represented by the
kiwi oemreboot variable in the initrd

<oem-reboot-interactive>true|false</oem-reboot-interactive>
Specify if the system is to be rebooted after the oem image has been deployed to the
designated storage device (default value is false). Prior to reboot a message is posted
and must be acknowledged by the user in order for the system to reboot. This value is
represented by the kiwi oemrebootinteractive variable in the initrd

<oem- recovery>true|false</oem- recovery>

If this element is set to true (default value is false), KIWI will create a recovery archive
from the prepared root tree. The archive will appear as /recovery.tar.bz2 in the
image file. During first boot of the image a single recovery partition will be created
and the recovery archive will be moved to the recovery partition. An additional boot
menu entry is created that when selected restores the original root tree on the system.
The user information on the /home partition or in the /home directory is not affected
by the recovery process. This value is represented by the kiwi_oemrecovery variable
in the initrd

<oem-recoveryID>partition-id</oem- recoveryID>
Specify the partition type for the recovery partition. The default is to create a Linux
partition (id = 83). This value is represented by the kiwi oemrecoveryID variable in
the initrd

<oem-silent-boot>true|false</oem-silent-boot>
Specify if the system should boot in silent mode after the oem image has been deployed
to the designated storage device (default value is false). This value is represented by
the kiwi oemsilentboot variable in the initrd

<oem-shutdown>true|false</oem-shutdown>
Specify if the system is to be powered down after the oem image has been deployed
to the designated storage device (default value is false). This value is represented by
the kiwi oemshutdown variable in the initrd

<oem-shutdown-interactive>true|false</oem-shutdown-interactive>
Specify if the system is to be powered down after the oem image has been deployed
to the designated storage device (default value is false). Prior to shutdown a message

29

preferences Element

is posted and must be acknowledged by the user in order for the system to power off.
This value is represented by the kiwi oemshutdowninteractive variable in the initrd

<oem- swap>true|false</oem- swap>
Specify if a swap partition should be created. The creation of a swap partition is the
default behavior. This value is represented by the kiwi oemswap variable in the initrd

<oem-swapsize>number in MB</oem-swapsize>
Set the size of the swap partition. If a swap partition is to be created and the size of the
swap partition is not specified with this optional element, KIWI will calculate the size
of the swap partition and create a swap partition equal to two times the RAM installed
on the system at initial boot time. This value is represented by the kiwi oemswapMB
variable in the initrd

<oem-systemsize>number in MB</oem-systemsize>

Set the size the operating system is allowed to consume on the target disk. The size
limit does not include any consideration for swap space or a recovery partition. In a
setup without a systemdisk element this value specifies the size of the root partition.
In a setup including a systemdisk element this value specifies the size of the LVM
partition which contains all specified volumes. Thus, the sum of all specified volume
sizes plus the sum of the specified freespace for each volume must be smaller or equal to
the size specified with the oem-systemsize. This value is represented by the variable
kiwi oemrootMB in the initrd

<oem-unattended>true|false</oem-unattended>
The installation of the image to the target system occurs automatically without requir-
ing user interaction. If multiple possible target devices are discovered the image is
deployed to the first device. kiwi oemunattended in the initrd

pxedeploy

Information contained in the optional pxedeploy section is only considered if the image
attribute of the type element is set to pxe. To use a PXE image it is necessary to create a
network boot infrastructure. Creation of the network boot infrastructure is simplified by
the KIWI provided package kiwi-pxeboot . This package configures the basic PXE boot en-
vironment as expected by KIWI pxe images. The kiwi-pxeboot package creates a directory
structure in /srv/tftpboot. Files created by the KIWI create step need to be copied to
the /srv/tftpboot directory structure. For additional details about the PXE image please
refer to the PXE Image chapter later in this document.

In addition to the image files it is necessary that information be provided about the client
setup. This information, such as the image to be used or the partitioning, is contained in
a file with the name config.MAC in the directory /srv/tftpboot/KIWI. The content of
this file is created automatically by KIWI if the pxedeploy section is provided in the image
description. A pxedeploy section is outlined below:

<pxedeploy server="IP" blocksize="4096">
<timeout>seconds</timeout>
<kernel>kernel-file</kernel>
<initrd>initrd-file</initrd>
<partitions device="/dev/sda">
<partition type="swap" number="1" size="MB"/>
<partition type="L" number="2" size="MB"
mountpoint="/" target="true"/>
<partition type="fd" number="3"/>

</partitions>
<union ro="dev" rw="dev" type="clicfs"/>
<configuration source="/KIWI/../file" dest="/../file" arch="..."/>

30

preferences Element

<configuration .../>
</pxedeploy>

« The server attribute is used to specify the IP address of the PXE server. The blocksize
attributes specifies the blocksize for the image download. Other protocols are supported
by KIWI but require the kiwiserver and kiwiservertype kernel parameters to be set
when the client boots.

+ The value of the optional timeout element specifies the grub timeout in seconds to be
used when the KIWI initrd configures and installs the grub boot loader on the client
machine after the first deployment to allow standalone boot.

+ Passing kernel parameters is possible with the use of the optional kernelcmdline at-
tribute in the type section. The value of this attribute is a string specifying the settings
to be passed to the kernel by the GRUB bootloader. The KIWI initrd includes these kernel
options when installing grub for standalone boot

« The optional kernel and initrd elements are used to specify the file names for the
kernel and initrd on the boot server respectively. When using a special boot method not
supported by the distribution’s standard mkinitrd, it is imperative that the KIWI initrd
remains on the PXE server and also be used for local boot. If the configured image uses
the split type or the pxedeploy section includes any union information the kernel and
initrd elements must be used.

« The partitions section is required if the system image is to be installed on a disk
or other permanent storage device. Each partition is specified with one partition child
element. The mandatory type attribute specifies the partition type id.

The required number attribute provides the number of the partition to be created. The
size of the partition may be specified with the optional size attribute. The optional
mountpoint attribute provides the value for the mount point of the partition. The op-
tional boolean target attribute identifies the partition as the system image target parti-
tion. KIWI always generates the swap partition as the first partition of the netboot boot
image. By default, the second partition is used for the system image. Use the boolean
target attribute to change this behavior. Providing the value image for the size at-
tribute triggers KIWI into calculating the required size for this partition. The calculated
size is sufficient for the created image.

« If the system image is based on a read-only filesystem such as squashfs and should be
mounted in read-write mode use the optional union element. The type attribute is used
to specify one of the supported overlay filesystem clicfs Use the ro attribute to point
to the read only device and the rw attribute to point to the read-write device.

« The optional configuration element is used to integrate a network client’s configu-
ration files that are stored on the server. The source attribute specifies the path on
the server for the file to be downloaded. The dest attribute specifies destination of the
downloaded file on the network client starting at the root (/) of the filesystem. Multiple
configuration elements may be specified such that multiple files can be transferred to
the network client. In addition configuration files can be bound to a specific client ar-
chitecture by setting the optional arch attribute. To specify multiple architectures use
a comma separated string.

size
Use the size element to specify the image size in Megabytes or Gigabytes. The unit at-
tribute specifies whether the given value will be interpreted as Megabytes (unit ="M") or

31

preferences Element

Gigabytes (unit ="G"). The optional boolean attribute additive specifies whether or not
the given size should be added to the size of the generated image or not.

In the event of a size specification that is too small for the generated image, KIWI will
expand the size automatically unless the image size exceeds the specified size by 100 MB
or more. In this case KIWI will generate an error and exit.

Should the given size exceed the necessary size for the image KIWI will not alter the image
size as the free space might be required for proper execution of components within the
image.

If the size element is not used, KIWI will create an image containing approximately 30 %
free space.

<size unit="M">1000</size>

split

For images of type split or iso the information provided in the optional split section
is considered if the compressed attribute is set to true. With the configuration in this
block it is possible to determine which files are writable and whether these files should
be persistently writable or temporarily. Note that for ISO images only temporary write
access is possible.

When processing the provided configuration KIWI distinguishes between directories and
files. For example, providing /etc as the value of the name attribute indicates that the /
etc directory should be writable. However, this does not include any of the files or sub-
directories within /etc. The content of /etc is populated as symbolic links to the read-
only files. The advantage of setting only a directory to read-write access is that any newly
created files will be stored on the disk instead of in tmpfs. Creating read-write access to
a directory and it’s files requires two specifications as shown below.

<split>
<temporary>
<!-- read/write access to -->

<file name="/var"/>
<file name="/var/*"/>

<!-- but not on this file: -->
<except name="/etc/shadow"/>
</temporary>
<persistent>
<!-- persistent read/write access to: -->

<file name="/etc"/>
<file name="/etc/*"/>

<!-- but not on this file: -->
<except name="/etc/passwd"/>
</persistent>
</split>

Use the except element to specify exceptions to previously configured rules.

machine

The optional machine section serves to specify information about a VM guest machine.
Using the data provided in this section, KIWI will create a guest configuration file required
to run the image on the target machine.

If the target is a VMware virtual machine indicated by the format attribute set to vindk,
KIWI creates a VMware configuration file. If the target is a Xen virtual machine indicated
by the domain attribute in the machine section KIWI will create a Xen guest config file.

32

preferences Element

The sample block below shows the general outline of the information that can be specified
to generate the configuration file

<machine arch="arch" memory="MB"
HWversion="number" guest0S="suse|sles"
domain="domO |domU" />
<vmconfig-entry>Entry for VM config file<\vmconfig-entry>
<vmconfig-entry .../>
<vmnic driver="name" interface="number" mode="mode"/>
<vmnic ...>
<vmdisk controller="ide|scsi" id="number"/>
<vmdvd controller="ide|scsi" id="number"/>

</machine>

arch
The virtualized architecture. Supported values are ix86 or x86 64. The default value
is ix86.

memory
The mandatory memory attribute specifies how much memory in MB should be allo-
cated for the virtual machine

HWversion
The VMware hardware version number, the default value is 3.

guest0S
The guest OS identifier. For the ix86 architecture the default value is suse and for
the x86_64 architecture suse-64 is the default. At this point only the SUSE and SLES
guestOS types are supported.

domain
The Xen domain setup. This could be either a domO which is the host machine hosting
the guests and therefore doesn’t require a configuration file, or it could be set to domU
which indicates this is a guest and also requires a guest configuration which is created
by KIWL

Use the vmconfig-entry element to create entries in the virtual machine's configuration
file; .vmx for VMware images and .xenconfig for Xen images. You may specify as many
configuration options as desired. The value of the vmconfig-entry element is expected to
be specified in the syntax required by the VM configuration file to be written. The value
is free format text and is not validated by Kiwi in any way. The entry is written to the
VM configuration file verbatim.

Use the vmdisk element to setup the virtual main storage device.

controller
Supported values for the mandatory controller attribute are ide and scsi.

id
The mandatory id attribute specifies the disk id. If only one disk is set the id value
should be set to 0.

device
The device attribute specifies the disk that should appear in the para virtual instance.
Therefore only relevant for Xen

Use the vmdvd element to setup a virtual optical drive (CD/DVD) connection

33

users Element

controller
Supported values for the mandatory controller attribute are ide and scsi.

id
The mandatory id attribute specifies the disk id. If only one disk is set the id value
should be set to 0.

Use the vmnic element to setup the virtual network interface. Multiple vmnic child ele-
ments may be specified to setup multiple virtual network interfaces.

driver
The mandatory driver attribute specifies the driver to be used for the virtual network
card. The supported values are €100, vlance, and vmxnet. If the vmxnet driver is
specified the vmware tools must be installed in the image.

interface
The mandatory interface attribute specifies the interface number. If only one inter-
face is set the value should be set to 0.

mode
The network mode used to communicate outside the VM. In many cases the bridged
mode is used.

4.1.5. users Element

<users group="group_name" id="number">
<user home="dir" id="number" name="user" password="..."
pwdformat="encrypted|plain" realname="string" shell="path"/>
<l-- ... -->

</users>

The optional users element lists the users belonging to the group specified with the group
attribute. At least one user child element must be specified as part of the users element.
Multiple users elements may be specified.

The attributes home, id, name, pwd, realname, and shell specify the created users home
directory, the user name, the user’s password, the user’s real name, and the user’s login shell,
respectively. By default, the value of the password attribute is expected to be an encrypted
string. An encrypted password can be created using kiwi - - createpassword. It is also possible
to specify the password as a non encrypted string by using the pwdformat attribute and setting
it’s value to “plain”. KIWI will then encrypt the password prior to the user being added to
the system.

All specified users and groups will be created if they do not already exist. By default, the
defined users will be part of the group specified with the group attribute of the users element
and the default group called “users”. If it is desired to have the specified users to only be
part of the given group it is necessary to specify the id attribute. It is recommended to use
a group id greater than 100.

4.1.6. drivers Element

<drivers profiles="name">
<file name="filename"/>
<l-- ... -->
</drivers>

34

repository Element

The optional drivers element is only useful for boot images (initrd). As a boot image doesn’t
need to contain the complete kernel one can save a lot of space if only the required drivers
are part of the image. Therefore the drivers section exists. If present only the drivers which
matches the file names or glob patterns will be included into the boot image. Each file is
specified relative to the /1ib/modules/Version/kernel directory.

According to the driver element the specified files are searched in the corresponding direc-
tory. The information about the driver names is provided as environment variable named like
the value of the type attribute and is processed by the function suseStripKernel. According
to this along with a boot image description a script called images.sh must exist which calls
this function in order to allow the driver information to have any effect.

4.1.7. repository Element

<repository type="type" alias="name" imageinclude="true|false"
password="password" priority="number" status="replaceable"
username="user-name"> <source path="URL"/>

</repository>

The mandatory repository element specifies the location and type of a repository to be
used by the package manager as a package installation source. The mandatory type attribute
specifies the repository type. A specified repository can only be accessed by the chosen package
manager if the given type is supported by the specified package manager. KIWI supports smart
or zypper as package managers, specified with the packagemanager element. The default
package manager is zypper. The following table shows the possible supported repository types
for each package manager:

Table 4.1. Supported Package Manager Repository Types

Type smart zypper apt yum
apt-deb yes no yes no
rpm-dir yes yes no no
rpm-md yes yes no yes
yast2 yes yes no no

The repository element has the following optional attributes:

alias="name"
Specifies an alternative name for the configured repository. If the attribute is not specified
KIWI will generate an alias name by replacing any “/” in the given repository location with
an “_”. It is helpful to set an alias name if the repository path is insufficient in expressing
the purpose of the contained packages.

imageinclude="true|false"
Specifies whether the given repository should be configured as a repository in the image
or not. The default behavior is that repositories used to build an image are not configured
as a repository inside the image. This feature allows you to change the behavior by setting
the value to true. The repository is configured in the image according to the source path as
specified with the path attribute of the source element. Therefore, if the path is not a fully
qualified URL, you may need to adjust the repository file in the image to accommodate
the expected location. It is recommended that you use the alias attribute in combination
with the imageinclude attribute to avoid having unpredictable random names assigned
to the repository you wish to include in the image. This also facilitates modification of the

35

repository Element

"baseurl" entry in the .repo file from the config.sh script if you need to make adjustments
to the path.

password="string"
Specifies a password for the given repository. The password attribute must be used in
combination with the username attribute. Dependent on the repository location this
information may not be used.

prefer-license="true|false"
The repository providing this attribute will be used primarily to install the license tarball
if found on that repository. If no repository with a preferred license attribute exists, the
search happens over all repositories. It's not guaranteed in that case that the search order
follows the repository order like they are written into the XML description.

priority="number"

Specifies the repository priority for this given repository. Priority values are treated differ-
ently by different package managers. Repository priorities allow the package management
system to disambiguate packages that may be contained in more than one of the config-
ured repositories. The smart package manager treats packages from repositories with the
highest priority number as preferable to packages from a repository with a lower priori-
ty number. The value 0 means “no priority is set”. The zypper package manager prefers
packages from a repository with a lower priority over packages from a repository with
higher priority values. The value 99 means “no priority is set”.

status="replaceable"
This attribute should only be applied in the context of a boot image description. Setting
the status to replaceable indicates that the specified repository my be replaced by
the repositories specified in the image description. This is important as the KIWI generated
boot image, if required, should be created based on packages from the same repositories
used to build the system image.

username="name"
Specifies a user name for the given repository. The username attribute must be used in
combination with the password attribute. Dependent on the repository location this
information may not be used.

When specifying an https location for a repository it is generally necessary to include the
“openssl-certs” and “cracklib-dict-full” packages in the bootstrap section of the image con-
figuration.

The location of a repository is specified by the path attribute of the mandatory source child
element. The location specification may include the %arch macro which will expand to the
architecture of the image building host. The value for the path attribute may begin with any
of the following location indicators:

dir:///local/path
An absolute path to a directory accessible through the local file system. The “dir://” prefix
may be omitted.

ftp://URL
A ftp protocol based network location.

http://URL
A http protocol based network location.

36

packages Element

https://URL
A https protocol based network location. See the comment above about the handling of
certificates and additional package requirements in the bootstrap section of the image
configuration.

iso://path/to/isofile
An absolute path to an .iso file accessible via the local file system. KIWI will loop mount
the the .iso file to a KIWI created directory with a generated name. The generated path is
provided to the specified package manager as a repository location.

Using multiple .iso files from the same SLE product, requires that all .iso files are locat-
ed in the same directory. Only the first .iso file is to be specified as a repository in the
config.xml. The first .iso file contains all information necessary for the package manager
to locate packages that are contained in other .iso files of the same product. Attempting
to use multiple .iso files in a series as standalone repositories will result in an error.

obs://%$dirl/$dir2
A special network location used with the http protocol. The values of $dirl and $dir2
represent the project location in the openSUSE build service. The location is evaluated as
this://repos/$dirl/$dir2 .

The “obs://” prefix is also valid as part of the value for the boot attribute of the type. If
used with the boot attribute it is evaluated as this://images/$dirl/$dir2 .

opensuse://PROJECTNAME
A special network location used with the http protocol. The given PROJECTNAME specifies
a project in the openSUSE Build Service. The repository is a repository of type rpm-md.
For example: path= "opensuse://openSUSE:10.3/standard" .

plain://URI
A plain resource string. Everything following 'plain://' will be forwarded to the package
manager without further modification. This type of location specification is useful when
KIWI does not support a specific URI but the specified package manager does.

smb://Samba share pathname

A path to a samba share using the cifs protocol. KIWI creates a mount point and mounts
the share including username and password, if specified. Access to the smb share from
within the new root tree is provided via a cifs mount. Therefore, the package providing
the cifs tools must be included in the package list for the bootstrap section of the image
configuration. At the time of this writing the package providing the cifs tools is called
cifs-utils. If any packages provided by the Samba share are used as part of the boot image
the cifs tools must also be included in the boot image. This is accomplished with the
bootinclude attribute of the package element. This is shown in the example below:

<packages type="bootstrap">

<package name="cifs-utils" bootinclude="true"/>
</packages>

this://PATH
PATH is the relative location to the image description directory for the current image.

4.1.8. packages Element

<packages type="type" profiles="name" patternType="type"
<package name="name" arch="arch"/>

37

packages Element

<package name="name" replaces="name"/>
<package name="name" bootinclude="true" bootdelete="true"/>
<archive name="name" bootinclude="true"/>

<package .../>
<namedCollection name="name"/>
<namedCollection .../>
<opensuseProduct name="name"/>
<opensuseProduct .../>
<ignore name="name"/>
<ignore .../>

</packages>

The mandatory packages element specifies the list of packages (element package) and pat-
terns (element namedCollection) to be used with the image. The value of the type attribute
specifies how the packages and patterns listed are handled, supported values are as follows:

bootstrap
Bootstrap packages, list of packages for the new operating system root tree. The packages
list the required components to support a chroot environment in the new system root tree,
such as glibc.

delete
Delete packages, list of packages to be deleted from the image being created.

When using the delete type only package elements are considered, all other specifications
such as namedCollection are ignored. The given package names are stored in the $delete
environment variable of the /.profile file created by KIWI. The list of package names
is returned by the baseGetPackagesForDeletion function. This list can then be used to
delete the packages ignoring requirements or dependencies. This can be accomplished in
the config.sh or images.sh script by calling the following helper function:

suseRemovePackagesMarkedForDeletion
Note, that the delete value is indiscriminate of the image type being built.

image
Image packages, list of packages to be installed in the image.

iso
Image packages, a list of additional packages to be installed when building an ISO image.

oem
Image packages, a list of additional packages to be installed when building an OEM image.

pxe
Image packages, a list of additional packages to be installed when building an PXE image.

vmXx
Image packages, a list of additional packages to be installed when building a vmx virtual
image of any format.

4.1.8.1. Using Patterns

Using a pattern name allows you to considerably shorten the list of specified packages in the
config.xml file. A named pattern, specified with the namedCollection element is a repre-
sentation of a predefined list of packages. Specifying a pattern will install all packages listed
in the named pattern to be installed in the image. Support for patterns is distribution specific

38

packages Element

and available with SLES, openSUSE, CentOS and RHEL. The optional patternType attribute
on the packages element allows you to control the installation of dependent packages in the
image. You may assign one of the following values to the patternType attribute:

onlyRequired
Incorporates only patterns and packages that the specified patterns and packages require.
This is a "hard dependency" only resolution.

plusRecommended
Incorporates patterns and packages that are required and recommended by the specified
patterns and packages in config.xml.

By default, only required patterns and packages are installed. KIWI depends on the package
manager to resolve the specified list of patterns and packages against the specified repositories
and complete the installation. Note that not all supported package managers support the use
of named patterns, thus the value of the packageManager element determines whether you
are able to use named patterns or not. Should the list of specified packages result in a conflict
the image creation process will stop and the information provided by the package manager
will be captured in the build log and will be displayed in the terminal window where KIWI was
started. The ignore element may be of use in resolving such conflicts. However, the ignore
element is limited to effect packages named explicitly. Packages installed in the image through
a named pattern are not effected by the ignore element setting. Therefore, package conflicts
created by packages within named patterns cannot be resolved using the ignore mechanism.
Further, if a package is specified to be ignored, but is required by another package, then the
required package is installed in the image via the automatic dependency resolution by the
package manager in use.

4.1.8.2. Architecture Restrictions

To restrict a package to a specific architecture, use the arch attribute to specify a comma
separated list of allowed architectures. Such a package is only installed if the build systems
architecture (uname -m) matches one of the specified values of the arch attribute.

4.1.8.3. Packages to Become Included Into the Boot Image

The optional attributes bootinclude and bootdelete can be used to mark a package inside
the system image description to become part of the corresponding boot image (initrd). This
feature is most often used to specify bootsplash and/or graphics boot related packages inside
the system image description but they are required to be part of the boot image as the data
is used at boot time of the image.

Packages included into the boot image with the bootinclude are still included into the system
image as well. If packages should only be included into the boot image, but not the system
image, they need to be added to the packages section of type=delete.

If the bootdelete attribute is specified along with the bootinclude attribute this means that
the selected package will be marked as a “to become deleted” package and is removed by the
contents of the images.sh script of the corresponding boot image description.

4.1.8.4. Data not Available as Packages to Become Included

With the optional archive element it’s possible to include any kind of data into the image. The
archive elements expects the name of a tarball which must exist as part of the system image

39

packages Element

description. KIWI then picks up the tarball and installs it into the image. If the bootinclude
attribute is set along with the archive element the data will also become installed into the
boot image.

40

5 Advanced Configuration

Table of Contents

5.1. IMAZE CACKES ..ceeeiiiiiiiiiiiiiieeeee ettt e e e e e te e e e e e e e s s s s ssnraaeeeeeeeesssssnnsnnaaaeaeens 41
5.2, KIWT RAID SUDPPOIT ..ttt ee ettt e e e e ctteae e s e e e e teeen e s s eeeeemannaeaeeaeeas 42
5.3. KIWI Custom Partitionscccccceeieeiiiiiiiiiiiiiiiiiiiiiiiiiiertcceeee s insnreteee e e essnnnneee 42
5.4. KIWI ENCIYPLiON SUPPOTL ...uueeiieeeeeeeeeieeeeeeeeeeee e eessannes 44

In this chapter you will learn how to speed up image rebuilds by using images caches. It also
deals with setting up images supporting complex storage scenarios such as RAID, LVM and
encrypted partitions.

5.1. Image Caches

The process of creating an appliance could take quite some time and often the same software
is installed over and over again. To speed up that process KIWI can create and re-use so
called image caches. An image cache in KIWI is a partial root tree created from a cache image
description.

Figure 5.1. Image Caching Architecture

A cache needs to be created before it can be used. This can be done using any standard kiwi
image description, including boot image descriptions. That means you can simply use one of
the template or *boot descriptions and create a cache from it. However, it is more efficient to
create image descriptions for the sole purpose of caching. Such descriptions could represent
a set of patterns for example. The less specific a cache is the more often it can be re-used

Once there are caches in the system KIWI selects the best match and mounts the cache in a way
that all write actions (copy-on-write cache) are redirected to the new root system. That way
the cache itself is never changed and can be re-used simultaneously for other build processes.
As a result the build process does not start with an empty tree but with a tree filled with the
contents of the cache. Only the missing parts need to be added, which speeds up the build
considerably.

Example 5.1. Building Multiple VMX Images

Assume we want to build some images of type 'vimx' based on the SLES 12 JeOS image de-
scription. Create image caches for the system and the boot image like follows:

1. Build the boot image (initrd) cache:

41

KIWI RAID Support

kiwi --init-cache /usr/share/kiwi/image/vmxboot/suse-SLES12

2. Build the JeOS image cache:

kiwi --init-cache /usr/share/kiwi/image/suse-SLE12-Je0S/

By default those caches will be created in /var/cache/kiwi-images. To run a build which
uses caches, run the following command;

kiwi --build suse-SLE12-Je0S -d /tmp/myimage --type vmx \
--cache /var/cache/kiwi-images

This call speeds up the build a lot compared to building without caches. It is important to
understand that a cache based build will create a root tree which contains only the differences
compared to the used cache. Thus at any time you want to create an image out of it you need
to make sure that the cache exists and is accessible on the system.

5.2. KIWI RAID Support

KIWI supports three types of RAID systems:

Real RAID Controllers with Their Own Firmware
KIWI only needs to make sure the drivers are part of the initrd e.g cciss for the smart array
controllers built into some server boards.

BIOS RAID Controllers
Cheap onboard controller devices with the RAID software inside the BIOS (so called fake
RAID). Linux supports some of them with the 'dmraid' utility and the support is a mix of
BIOS calls and some device mapper calls.

The check for these devices can be switched on and off with <oem-ataraid-scan > true|
false < /oem-ataraid-scan >

Linux Software RAID
There is no hardware involved. The Linux kernel can control any storage device by adding
RAID capabilities. All the work done by a real hardware controller is done in software.

All this is done using the 'mdadm’ utility. The metadata for the devices are stored in RAID
blocks on the storage device which requires them to be of the correct partition type.

The software RAID is supported in a so called degraded mode. This means the RAID is
created but not all devices to build it are attached. That is because an image initially only
consists of a single disk. The user needs to add devices or change the RAID mode manually
after deployment. This is an easy task if the system comes up prepared accordingly. To
use Linux software raid in KIWI images you only need to set:

<type ... mdraid = "mirroring" >

Currently kiwi supports a degraded mirroring (raid:1) or stripping (raid:0) configuratiom
but you can change the mode to any supported raid level after deployment.

5.3. KIWI Custom Partitions

KIWTI supports custom partitioning via LVM, the logical volume manager for the Linux kernel,
or on file systems with volume support like Btrfs or ZFS.

42

Custom Partitioning via LVM

5.3.1. Custom Partitioning via LVM

To define an LVM volume, a systemdisk element within the type element in the config.xml
file must be defined. The systemdisk element has an optional attribute name, which specifies
the volume group name.

For additional non root or swap volumes the systemdisk element can contain the child ele-
ment volume, with four possible attributes:

name
A required attribute. The name of the volume. If mountpoint is not specified, a directory
with the given name will be created by KIWT if it does not already exist inside the root tree.
However, if the name contains the KIWI internal path field separator “_”, it is required to
specify the path in an additional mount point attribute. The special value @root can be
combined with the size or freespace attribute to control the size of the root volume.

size
An optional attribute. Absolute size of the volume. If the size value is too small to store
all data kiwi will exit. If no suffix is used, the value will be considered as Megabytes,
otherwise add M (Megabyte) or G (Gigabyte) as suffix.

freespace
An optional attribute. Free space to be added to this volume. If no suffix is used, the value
will be considered as Megabytes, otherwise add M (Megabyte) or G (Gigabyte) as suffix.

mountpoint
An optional attribute. Specifies a path which needs to exist inside the root directory.

Example 5.2. Examples for Configuring LVM

The following example will create a logical volume named LVtmp with minimal size to store
the content of /tmp of the image at build time. The volume is mounted to /tmp:

<image ...>
<preferences>
<type ...>

<systemdisk name="vgroup-name">
<volume name="tmp"/>
</systemdisk>
</type>
</preferences>
</image>

To set the volume size to 200 MB use:

<image ...>
<preferences>
<type ...>

<systemdisk name="vgroup-name">
<volume name="tmp" size="200M"/>
</systemdisk>
</type>

</preferences>

43

Custom Partitioning via Btrfs

</image>

To create the logical volume named foo with 500 MB of free space mounted as /tmp, use:

<image ...>
<preferences>
<type ...>

<systemdisk name="vgroup-name">
<volume name="tmp" freespace="500M" mountpoint="tmp"/>
</systemdisk>
</type>
</preferences>

</image>
The volumes LVRoot and LVSwap for the root file system and for swap, will always be gener-
ated. To control the size if LVRoot, use the special name @root.

<image ...>
<preferences>
<type ...>

<systemdisk name="vgroup-name">
<volume name="@root" size="2M"/>
</systemdisk>

</type>
</preferences>

</iﬁége>
5.3.2. Custom Partitioning via Btrfs

If Btrfs is used as a file system, the subvolume management is configured via the same sys-
temdisk element as explained in Section 5.3.1, “Custom Partitioning via LVM”. Also the same
rules as explained for lvm volumes applies to Btrfs subvolumes with the following exception;

There is no @root volume and no size setup. The Btrfs file system is created with an
initial size which can be specified by the size element All subvolumes are part of the file
system itself and managed by a namespace. The overall size is shared across the entire file
system and the size of an entity can be controlled by a Btrfs quota which is not applied by
kiwi at the moment

5.4. KIWI Encryption Support

KIWI supports Linux Unified Key Setup (LUKS) encrypted images. To set up an encrypted
volume , add the attribute Luks to the type element in config.xml. The value of the attribute
represents the password string which will be required to mount the file system while booting:

<image ...>
<preferences>
<type ... luks="password"/>
</preferences>

</image>

44

6 Maintaining Appliance Images

Table of Contents

6.1. Image Maintenance: Updating Software Packagescccccccceeerriiiieeiiiiiieenncnieeeenennne 45
6.2. Image Maintenance: Modifying the Configurationccceeeveeeriiiiiecenieneeeeeeennneen. 46

Whenever you create an appliance as described in Chapter 14, Creating Appliances, you are
using a snapshot of the software repositories. As time goes by, the software continues to de-
velop and the image becomes outdated. Something similar applies to the appliance configu-
ration, which may become outdated when, for example, the network setup has changed or
services have been replaced. Last, it may be necessary to update the image description itself,
for example to add or change repositories. To prevent an image from becoming outdated,
KIWI provides means to maintain existing images.

kiwi --upgrade
The --upgrade option can be used to update a previously built image without making
any changes to the image description. It requires an existing unpacked root tree. This
option can be used to update software packages within an image. Since it only modifies
an existing root tree, it is faster than re-building an image from scratch.

kiwi --prepare
In case the appliance configuration or the image description needs to be changed, the
image root tree needs to be rebuilt with --prepare to make these changes permanent.
We using this method to upgrade an existing image, it is recommended to put the image
description under a version control system such as git or subversion. This allows to track
the changes and to easily switch between image versions.

6.1. Image Maintenance: Updating Soft-
ware Packages

The quickest way to produce an updated image containing the latest software versions from
the repositories configured in the image description is to use KIWI's - -upgrade option. It
optionally allows to specify additional repositories (such as an update repository) or packages
on the command line. Using --upgrade requires an existing unpacked image tree from a
previous run of kiwi --prepare.

1. Make sure you know the path to the existing unpacked root tree. In the following we
assume it is located at /tmp/myIS0. If you need to add additional repositories, note down
the paths and types.

45

Image Maintenance: Mod-
ifying the Configuration

Run the following command to update the unpacked root tree from the repositories con-
figured in the image description:

kiwi --upgrade /tmp/myISO

You can optionally specify additional repositories not yet configured in the image de-
scription, or additional packages and/or patterns. The latter two can be part of the added
repositories or the ones already configured.

kiwi --upgrade /tmp/myISO --add-repo REPO --add-repotype REPO TYPE \
- -add-package PACKAGE --add-pattern PATTERN

Run kiwi --create to build the final image. The following example assumes that the image
is created in /tmp:

kiwi --create /tmp/myISO --destdir /tmp
Adding Repositories, Packages or Patterns

Repositories, packages or patterns that you specify with the --add-* commands are
not added to the image description! Therefore these additions are not permanent and
need to be specified again with the next run. If you want to make these additions
permanent, proceed as described in Section 6.2, “Image Maintenance: Modifying the
Configuration”.

Configuration Changes

Running KIWI with the - -upgrade option does not rebuild the root tree—it only ma-
nipulates the existing version that was created with the last - -prepare-run. Changes
to the image description that have been made after the last - -prepare-run, have no
effect when running the - -upgrade option.

In case of un-applied configuration changes, rebuild the unpacked root tree from
scratch with kiwi --prepare.

6.2. Image Maintenance: Modifying the
Configuration

In case you need to change the configuration of the appliance (see Section 14.1, “The KIWI
Model”) or the image description (see Chapter 4, KIWI Image Description you need to rebuild
the complete image tree by running kiwi --prepare, to make your changes permanent. It is
strongly recommended to put your image description under a version control system to enable
tracking of changes and different version builds.

1.

2.

Put your image description directory under a version control system such as git. This step
is optional, but strongly recommended.

Change the image description as needed. Stick to the following general rules:

a. To add packages or patterns, modify the respective entries in configuration.xml.
See Section 4.1.8, “packages Element” for details.

b. To change the list of repositories, modify the respective entries in
configuration.xml. See Section 4.1.7, “repository Element” for details.

46

Image Maintenance: Mod-
ifying the Configuration

c. To change the configuration of your appliance, modify the respective files in the
overlay tree or provide an updated archive.

d. To change the user-defined tasks that will be carried out after the installation (for
example activating services), adjust the configuration.sh script.

Create an unpacked root tree by running kiwi --prepare. The following example assumes
that the image description is located under /tmp/myISO config and that the result is
written to /tmp/myISO0:

kiwi --prepare /tmp/myISO config --root /tmp/myISO

Run kiwi --create to build the final image. The following example assumes that the image
is created in /tmp:

kiwi --create /tmp/myISO --destdir /tmp

When the final version of your changes has been applied, make sure to check this state
in to the version control system.

Do not Manipulate the Unpacked Root Image

The unpacked image directory is a directory, as far as the build system is concerned
and you can manipulate the content of this directory according to your needs. Since it
represents a system installation you can “chroot” into this directory for testing purpos-
es. The file system contains an additional directory named /image that is not present
in a regular system. It contains information KIWI requires during the create step, in-
cluding a copy of the config.xml file.

Do not make any changes to the system, since they will get lost when re-running the
prepare step again. Whats more, you may introduce errors that will occur during the
create step, that are difficult to track. The recommended way to apply changes to the
unpacked image directory is to change the configuration and re-run the prepare step
as described above.

47

48

Part II. Usecases

Table of Contents

7. ISO IMAage / LiVe SYSTEIMceeriiriiiieeieiiiieeeeeiitteeeeeiteeeesenrteeeessasraeeesssnseaeesssnseeesanns 53
7.1. Building Live CD/DVD IMAZESceevrerrurreerrerrreeeenriireeessssirreeessssseeessssssseeesssssnees 53
7.2. Building Live Images for Removable USB DeViCeScccceverrrerureeeerriureeeensinneeenns 55
8. VMX Image / Virtual DisKsccooooiiiiiiiiiiiiiiiiieeeeceeeee e 57
8.1. BUilding VIMX IMAZESeeeeeerurieririiiieeeiiiiiteeeeniitteeeeeurteeeeesureeesesnneeessssnnsressennns 57
8.2, VMWATIE SUPPOTT ceeeiiiiiiiiiiiiiiiiiiiiitiiiitiieerieeseeesiiesiaiieiiseesssesssssssssssas 58
8.3. LVM SUPPOTL ceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiietiieseiessteesieesi s 59
8.4. Extra BOOt Partitioncccceeveeiiiiiiiiiiiiiiiiiiieiiieieieeeeeeeeeeeeeeereeeeeeeeeeeseesssaasaaaaaaeaaaenes 59
9. DOCKET IMAZESeeviiiiiiiiiieiieiiieeeeeiteee et e e ettt e e e s bt e e e s s sbeeeesssssaeeesssanraeeesssnsaaaeens 61
9.1. Building Docker IMagEeSccccovurrriiieerriieiriiiiieteeeeeeeeeeernereeeeeeeeeessesannneeeeeeeenss 61
9.2. Image Configuration Detailsccccceeeeriiiiiiiiiiiiiiieeeeeeeeeeereeeeee e e e eeeeeeeees 62
10. VaGrant DOXESccooiiiiiiiiiiiiiiiiiiiieeeeette et e et e e et e e e e e arat e e e e e naneeesesnnneeeeeas 63
10.1. Building Vagrant BOXESccceeeereieeeiiiiiieeenniiiteeeeiirteeeeesreteeeeesnreeeeessnnneeesanns 63
11. PXE Image / Thin CHEntscccccevrriiiiiiiniiiiieieeiteeecerteesseireee s sieeee e s s ssneeesssanne 65
11.1. Building PXE IMAZES ..ccceeeuurrrrreeeerieeeeeiiinreeeeeeeeeeeesesnnrreeeeeeeessssssssnseseeeeesssssssnns 65
11.2. PXE Configuration Filescccceiiiiiiiiiiiiieeeeeeiiieecieereeeeeeeeeeeeeneeeeeeeeeeeseeennns 66
11.3. The PXE Client Configuration File Syntaxcccccccceerrierriviinereeeeeeeeeensenineneeee 67
11.4. HardwWare GIOUPINEcccuverereeeereeerrrriiureeeeeeeeeeassassrnnereeeeesssssssssssnsseeseeesssssssssnnnes 76
12. OEM Image / Preload SYSLEIMSccoireiiieiiiiiiiieiieiieeeieeiieeeseesneeeeseenreeeesesnneees 81
12.1. Building an OEM System and an Installation Imagecccccccceeeereiieeeencnnneenn. 81
12.2. TeSting the TMAZESeeiieiiiiieeiiiiiiiiieeeeeeeeesrrirreeee e et e e s e s s srrrseeeeeeessssssssnnssseaes 82
12.3. Installation IMage FIAVOTScceeiiiiiriiiiiiiiiieeeeeeeeeeeriirreeeeeeeeessssssnesnseeeeseesssnns 82
12.4. Customizing the OEM IMAZESccccvveeeeeeeeererriiiiirreeeeeeeeessssssssrreeeeeeseesssssssnsssnees 83
12.5. Network Based Installationccccccceevviiiiiiiiiiiiiiniiciiiicceccreceeccree e 86
13. Xen Para- and Full virtual Imagescccccceeriiiiiiiiiiiiineeeeeeeeee e 89
13.1. Building a DomO IMAZEcccoouuerrrieieeerieeieiiieeteeeeeeeeeeernereeeeeeeeeessssnannnereeeeeeees 89
13.2. Testing the DOmO IMAGEccceouummriiiiieeeieieeeiiireteeeeeeeeeeerrerreeeeeeeseeseenannnneeeees 90
13.3. Building a Paravirtualized Xen Guest IMageccccceeeerrerreerrueereeeeeeeeeenennninnnnee 920
13.4. Building a Fully Virtualized Xen GUESLcccccumerreeeeerirreriiiinrreeeeeeeeeeeeeesaneeeee 920
13.5. Using the GUEeSt IMAZES ...cceeeeuurreireeieeirieieeiritteeeeeeeeeeeirrreeeeeeeeseesssaasnneeeeees 90
14. Creating APPLIANCEScooiiiiiiiiiiiiiiiieieete ettt e et e e st e e e s e sreee s e eanaeees 93
14.1. The KIWI MOdelccoiiiiiiiiiiiiiiiiitiittececetecite et sne e 93
15. System AnalysiS/MiGIrationcccccceeiriiuieerrniiieeeinniieeeeensireeeessssreeeessssseeeesssssneees 97

51

52

7 1ISO Image / Live System

Table of Contents

7.1. Building Live CD/DVD IMAZESceeerrerurieeeiiiitieeeeiitteeeesnteeeessnreeesessnseneesessnseeesssnnne 53
7.2. Building Live Images for Removable USB DeViCescccceevureerirrrurieericniieeeeeneeeeenn. 55

A live system image is an operating System on CD, DVD or removable USB storage. It can
bee booted directly from the media. A CD/DVD live system is read-only—all changes to the
system are done in RAM will be lost as soon as the computer shuts down. A removable USB
storage can optionally be set up with an additional partition (hybrid ISO image) which can
be used for writing data.

ISO Image Description Templates

KIWI comes with many image description templates. It is recommended to use them
as a basis for your own image descriptions. To do so, copy the respective directory
containing the image description of your choice to you working directory and adjust
it according to your needs.

ISO image templates are shipped with the package kiwi-desc-isoboot. They are in-
stalled to /usr/share/kiwi/image/isoboot.

Just Enough Operating System (JeOS) Templates

The package kiwi-templates contains ready-to-use JeOS templates. They are installed
to /usr/share/kiwi/image/*-Je0S/. These templates can be used without any mod-
ification to build images containing a minimal operating system. The template direc-
tory is in KIWI's search path, therefore it is sufficient to only specify the name of the
*-Je0S directory on the KIWI command line. Get a list of available templates with
the following command:

(cd /usr/share/kiwi/image/ && ls -d1 *-Je0S)

7.1. Building Live CD/DVD Images

The following example shows how to build a Just enough Operating System (JeOS) based on
SUSE Linux Enterprise 12:

kiwi --build suse-SLE12-Je0S -d /tmp/myiso-result --type iso

There are two possibilities to use the ISO image generated above:

53

Split mode

1. Burn the .iso file on a CD or DVD with your preferred burn program. Plug in the CD or
DVD into a test computer and (re)boot the machine. Make sure the computer boots from
the CD drive as first boot device.

2. Use a virtualization system to test the image directly. Testing an ISO image can be done
with any full virtual system for example QEMU:

gemu -cdrom /tmp/myiso-result/LimeJe0S-SLE12.x86 64-1.13.1.is0

KIWI supports different flavors of file systems and boot methods along with the ISO image
type. The template suse-SLE12-Je0S from the example above, uses an overlayfs-based com-
pressed root file system. Set the file system type with the flags attribute in config.xml:

<image ...>
<preferences>
<type image="iso" flags="FSTYPE" .../>
</preferences
</image>

The following values can be set for FSTYPE:

Value Description

compressed Does file system compression with squashfs, but does not use an overlay
file system for write support. A symbolic link list is used instead and thus a
split element is required in config.xml. See Section 7.1.1, “Split mode”
for details.

overlay overlayfs allows to combine two file systems into one. The root file sys-
tem exists as a compressed squashfs file system and all write operations
are redirected to the RAM or to a persistent area on a disk. The result is
a fully writable live-system.

seed Creates a Btrfs image and allows write operations into a cow (seed) file.
In case of an ISO image the seed device is created on a RAM disk.

unset If the flags attribute is not set, no compressed nor overlay file system will
be used. The root tree will be directly part of the ISO file system and the
paths: /bin, /boot, /lib, /1ib64, /opt, /sbin, and /usr will be read-
only.

7.1.1. Split mode

If no overlay file system is in use but the image file system is based on a compressed file
system, KIWI allows toc onfigure which files and directories should be writable in a so-called
split section. To allow login in to the system, at least the /var directory needs to be writable.
This is because the PAM authentication requires to be able to report any login attempt to /
var/log/messages which therefore needs to be writable. The following example ensures that
/boot, /etc, /home, and /var are writable:

<image ...>
<preferences>
<type image="iso" flags="compressed" .../>
<split>
<persistent>

<file name="/var"/>
<file name="/var/*"/>

54

Hybrid mode

<file name="/boot"/>
<file name="/boot/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home"/>
<file name="/home/*"/>
<file name="/tmp"/>
<file name="/tmp/*"/>
</persistent>
</split>

</type>

</image>

7.1.2. Hybrid mode

A hybrid image is an ISO image including a partition table. therefore it cab be attached as a
CD/DVD and as a normal disk to the system. This has the advantage that a hybrid ISO live
system can be burned to a CD/DVD and uploaded to a flash disk. To activate the hybrid feature
the hybrid attribute must be set to true as follows:

<image ...>
<preferences>
<type image="iso" hybrid="true" .../>
</preferences

7.2. Building Live Images for Removable
USB Devices

KIWI supports two types of images for removable USB devices. Hybrid ISO images are the same
as the live CD/DVD images. The second type are OEM virtual disk images. The deployment
of both types can be performed from any OS including Windows as long as a tool to dump
data onto a disk device exists and is used.

7.2.1. Hybrid ISO Image

As indicated above a hybrid ISO image also works as an image for removable USB devices. If a
hybrid ISO image is used like a disk image on a writable medium like a flash disk, it is possible
to write into a persistent area on the stick instead of the RAM. KIWI creates an additional Ext2
partition for this purpose if the attribute hybridpersistent is set to true.

<image ...>
<preferences>
<type image="iso" hybrid="true" .../>

</preferences

</iﬁége><
7.2.2. In RAM ISO Image

Any live CD iso image supports the toram mode. In this mode the contents on the ISO are
copied into a tmpfs on the system. In the standard live image mode the ISO is only mounted

55

OEM Virtual Disk Image

to the system. Reading the data from a tmpfs is however much faster than reading the data
from CD/DVD drive or flash disk. An additional benefit of the toram mode is the ability to
disconnect the CD/DVD drive or USB slot the live system originally existed. However the costs
for the performance win are a slower initial start-up time and more RAM requirements. A
minimum 2GB of RAM is recommended to boot 700M compressed live image. To activate the
toram mode place the following option at the boot prompt when the system starts up.

toram

7.2.3. OEM Virtual Disk Image

In contrast to the hybrid ISO image it is also possible to create an OEM virtual disk image. This
image type allows to create the live operating system plus a data partition for custom data.
The data partition is a fat partition also recognized by Windows. To create such a partition
use the option - -fat-storage size-in-MB on the KIWI command line:

kiwi --create ... --fat-storage 500

If this option is set, KIWI will use the syslinux boot loader for the image and for the first
FAT partition with the specified size. The live operating system itself will be hosted on a
logical volume (LVM), which allows to easily manipulate the logical root volume. For further
information about the OEM image type refer Chapter 12, OEM Image / Preload Systems.

7.2.3.1. OEM compressed / Read-only removable USB Me-
dia

If a compressed file system type like overlayfs is used for the image root directory, it is also
possible to choose whether to write on a partition or to the RAM. KIWI provides the attribute

ramonly for this purpose. To create a read-only image with compressed root file system for a
removable USB medium the following configuration is required:

<image ...>
<preferences>
<type image="iso" file system="overlayfs" ramonly="true" .../>

</preferences

</image>

56

8 VMX Image / Virtual Disks

Table of Contents

8.1. BUilding VMX IMAZES ...eeeeerrierrrriiiirreeeeeeeeeeeesiiirnreeeeeeeseessesssnerreeeeessssssssssssssseeeeessssnnes 57
8.2. VIMIWATE SUPPOIT «euueiieieiiiiiieeeeeeettteneee e et eetteenee e e e eetetenanee e s eeeenennnneneeeeeeennnnnessseeeerennnn 58
8.3, LVIM SUPPOTL ..ttt et ettt e e e ettt e e s e e e et ema e e s e eeetemana e s eeeenmnnnaeeseeeeeennnn 59
8.4. Extra Boot Partitionccooovvviiiiiiiiiiiiiiiiiiiiiiiiicicienirncccce e 59

A VMX image is a virtual disk image for use in full virtualization systems like Qemu or
VMware. The image is a file containing the system (represented by the configured packages
in config.xml) as well as partition data and boot loader information. VMX images have a
fixed disk size and geometry that cannot be changed (see Chapter 12, OEM Image / Preload
Systems for images with expandable disks).

VMX Image Description Templates

KIWI comes with many image description templates. It is recommended to use them
as a basis for your own image descriptions. To do so, copy the respective directory
containing the image description of your choice to you working directory and adjust
it according to your needs.

VMX image templates are shipped with the package kiwi-desc-vmxboot. They are in-
stalled to /usr/share/kiwi/image/vmxboot.

Just Enough Operating System (JeOS) Templates

The package kiwi-templates contains ready-to-use JeOS templates. They are installed
to /usr/share/kiwi/image/*-Je0S/. These templates can be used without any mod-
ification to build images containing a minimal operating system. The template direc-
tory is in KIWI's search path, therefore it is sufficient to only specify the name of the
*-Je0S directory on the KIWI command line. Get a list of available templates with
the following command:

(cd /usr/share/kiwi/image/ && ls -d1 *-Je0S)

8.1. Building VMX Images

The following example shows how to build a Just enough Operating System (JeOS) based on
SUSE Linux Enterprise 12:

kiwi --build suse-SLE12-Je0S -d /tmp/myvm-result --type vmx

57

VMware support

The command creates a virtual disk in the . raw format that can be directly booted with any
virtualization system. The following example shows how to boot it with QEMU:

gemu /tmp/myvm-result/LimeJe0S-SLE12.x86 64-1.13.1.raw -m 1024

KIWTI always generates a file in the . raw format. The . raw file is a disk image with an equiv-
alent to the structure of a physical hard disk. . raw images are supported by any hypervisor,
but are rather big in size (not compressed) and do not offer the best performance.

Therefore each virtualization system supports its own proprietary format supporting compres-
sion and improved I/0 performance. To build an image in a format other than . raw, add the
format attribute to the type definition in config.xml:

<image ...>
<preferences>
<type format="FORMAT" .../>
</preferences
</image>

The following values can be set for FORMAT:

Table 8.1. Supported Virtual Disk Formats

Name Description

vmdk Disk format for VMware

vhd|vhd-fixed Disk format for Microsoft HyperV

ovf|ova Open Virtual Format requires VMware's ovftool
qcow?2 QEMU virtual disk format

vdi Disk format for VirtualBox

vagrant Vagrant Box Format

gce Google Cloud Format

8.2. VMware support

A VMware image is accompanied by a guest configuration file. This file includes information
about the hardware to be represented by the guest as well as specifications of resources such
as memory.

It is possible to specify the VMware configuration settings in config.xml. Additionally, it is
possible to also include selected packages in the created image that are specific to the VM
image generation. This is done in the machine section in the configuration file. The following
example will create a VMware guest configuration with 512 MB of RAM and an IDE disk
controller:

<image ...>
<preferences>
<type format="vmdk" ...>
<machine memory="512">
<vmdisk controller="ide" id="0"/>
</machine>

</type>

58

LVM Support

</preferences
</image>
The guest configuration can be loaded via the VMware user interface and may be modified

through the GUI. The configuration file has the extension .vmx and the same basename as
the image:

/tmp/myvm-result/LimeJe0S-SLE12.x86 64-1.13.1.vmx

8.3. LVM Support

Support for LVM has been added for all image types which are disk-based. In order to use LVM
for the vimx type just add the - - Lvm option as part of the KIWI create/build step. Alternatively
add the attribute lvm ="true" as part of the type section in your config.xml file.

<image ...>
<preferences>
<type lvm="true" .../>

</§;éferences
</i$ége>
When using modern file systems like Btrfs or zfs, KIWI also supports using their native volume

management system. For more information how to setup custom partitions/volumes, see Sec-
tion 5.3, “KIWI Custom Partitions”.

8.4. Extra Boot Partition

Depending on the selected root file system and the capabilities of the boot loader, KIWI auto-
matically decides whether to set up a separate boot partition. The format of a boot partition
is set to ext2 by default.

To manually control the attributes bootpartition (can be set to true or false) and boot-
filesystem (can be set to ext2, ext3, ext4, fat32, or fatl6). A runtime check at build time
will test whether the given configuration can be implemented. The following example will
create an etx3-formatted boot partition:

<image ...>
<preferences>
<type bootpartition="true" bootfilesystem="ext3" .../>

</preferences

</image>

59

60

9 Docker images

Table of Contents

9.1. Building DoOCKEr IMAZES ...ccceverrrriuiirriieeeeeeeereriirirreeeeeeeeeeessssnrereeeeeeeeessssssssssseeeeesesssnns 61
9.2. Image Configuration Detailscccceeeeeeiiiirrriiiiiiieeeeeeeeeeeerrrreeeeeeeeeesessiareeeeeeeeessanns 62

Docker is a shipping container system for code that can run virtually everywhere. It is an
extension of LXC's capabilities. Since Docker is based on LXC, a Docker container does not
include a separate operating system. It relies on the functionality provided by the underlying
infrastructure. As such, it can package the application and all its dependencies in a virtual
container which can be run on any Linux server.

Docker not only makes it possible to deploy portable containers across machines. It also in-
cludes versioning capabilities for tracking different versions of a container, it allows re-using
containers as a base for other specialized components, and much more. Find more information
about Docker on its home page at http://www.docker.io.

Just Enough Operating System (JeOS) Templates

The package kiwi-templates contains ready-to-use JeOS templates. They are installed
to /usr/share/kiwi/image/*-Je0S/. These templates can be used without any mod-
ification to build images containing a minimal operating system. The template direc-
tory is in KIWT's search path, therefore it is sufficient to only specify the name of the
*-Je0S directory on the KIWI command line. Get a list of available templates with
the following command:

(cd /usr/share/kiwi/image/ && ls -d1 *-Je0S)

9.1. Building Docker Images

The following example shows how to build a Just enough Operating System (JeOS) based on
SUSE Linux Enterprise 12:

kiwi --build suse-SLE12-Je0S --add-profile docker --type docker -d /tmp/my-container

The image is packed into a TAR archive, /tmp/my-container/LimeJe0S-SLE12-
docker.x86 64-1.13.1.tar.xz in this example. To use this image with Docker it must be
imported via the docker command. The package docker needs to be installed and the daemon
dockerd needs to run:

cat /tmp/my-container/LimeJe0S-SLE12-docker.x86 64-1.13.1.tar.xz |\
docker import - slel2-jeos:new

61

http://www.docker.io

Image Configuration Details

When imported, a container instance can be started as follows:

docker run --privileged=true -t -i slel2-jeos:new /bin/bash
Unpacking the TAR archive

LXC images created by KIWI are packed into a TAR archive and need to be unpacked
at the root level (/) of the host system. Never do this with a Docker TAR archive since
it would overwrite data on the host system. Always use the docker command as de-
scribed above to import the image.

9.2. Image Configuration Details

The configuration for a container does not need to contain a kernel package. The container
represents the user space that runs on top of the kernel of the container host system. However,
the container itself must include the Linux user space container tools. 2015-07-29 - fs: Is this
a package? What needs to be done to include these tools?

to configure the network for the container use the vmnic in the config.xml file as shown be-
low. The mode attribute configures the network mode, with veth being the default. 2015-07-29
- fs: which other modes are valid?

Although it is possible to configure multiple network interfaces in the config.xml file, only
the first one is used in the container. Prerequisite for a working network in the container is
a network bridge named br0 configured on the host system. For complex network setups is
necessary to edit the configuration file for the container. 2015-07-29 - fs: How? Unpack TAR
archive, edit and tar again?

<image ...>
<preferences>
<type ...>
<machine ...>
<vmnic interface="0" mode="veth"/>

</ﬁééhine>
</£9§e>
</preferences>
</i$ége>
The generated configuration file restricts the device access of the container according to a

generally accepted best practice security model. The device access permissions may be mod-
ified by editing the config file for the container.

62

10 Vagrant boxes

Table of Contents

10.1. Building Vagrant BOXESccccccueeieeeeieiierieiiiiiieeeeeeeeeesessirereteeeeeeesssssnnsnereeeesssssssssnnnes 63

Vagrant [http://vagrantup.com/] is a nice framework to implement consistent process-
ing/testing work environments based on Virtualization technologies. To run a system, Vagrant
needs so-called “boxes”. A box is a TAR archive containing a virtual disk image and some
metadata.

To build Vagrant boxes, you can use veewee [https://github.com/jedi4ever/veewee] which
builds boxes based on AutoYaST, or Packer [http://packer.io], which is provided by Vagrant
itself.

Both tools are based on the official distribution media (DVDs). If such media does not exist (for
example if the distribution is still under development or you want to use a collection of your
own repositories), the KIWI way of building images might be helpful. In addition you can use
the KIWI image description as source for the Open Build Service [http://openbuildservice.org/
1 which then allows building and maintaining boxes in the Build Service as a plus.

10.1. Building Vagrant Boxes

The following example shows how to build a Just enough Operating System (JeOS) based on
SUSE Linux Enterprise 12:

kiwi --build suse-SLE12-Je0S --add-profile vagrant --type vmx -d /tmp/my-box

The build result is written to /tmp/my-box. The .box and . json files are needed to add and
run the box in Vagrant. The .box file is a TAR archive containing the virtual disk image for
the selected virtualization provider. In this example it is a gqcow2 image to be used with libvirt
and some metadata which mostly duplicates the information from the '.json' file to have it
packaged in one place, too. 2015-07-29 - fs: not sure what the last part of the sentence is supposed
to say... .

The system installed on the virtual disk needs to fulfill some requirements which are doc-
umented at http://docs.vagrantup.com/v2/boxes/base.html. The KIWI template makes sure
these requirements are met:

+ installation of mandatory packages: sudo, openssh and rsync

+ users root and vagrant are both configured to use vagrant as password

63

http://vagrantup.com/
http://vagrantup.com/
https://github.com/jedi4ever/veewee
https://github.com/jedi4ever/veewee
http://packer.io
http://packer.io
http://openbuildservice.org/
http://openbuildservice.org/
http://docs.vagrantup.com/v2/boxes/base.html

Building Vagrant Boxes

+ integration of the Vagrant public SSH key from https://github.com/mitchellh/va-
grant/tree/master/keys

+ starting sshd daemon at boot time with UseDNS set to no
+ sudo configured to allow passwordless root permissions for the vagrant user

Using the box requires a correct Vagrant installation on your machine. The 1ibvirtd daemon
and the libvirt default network need to be running.

Adding the box to Vagrant can be done in two ways. Either by using the . box file and providing
a name at the command line:

cd /tmp/my-box
vagrant box add my-box LimeJe0S-SLE12.x86 64-1.13.1.libvirt.box

or by using the . json file to provide metadata such as a version number (similar to the boxes
downloaded from https://vagrantcloud.com/):

cd /tmp/my-box
vagrant box add LimeJe0S-SLE12.x86 64-1.13.1.libvirt.json

2015-07-29 - fs: Are the cd commands really needed? What about vagrant box add /tmp/my-box/
LimeJeOS-SLE12.x86_64-1.13.1.libvirt.json ?

With either method, you can now boot the box and log in:

root # cd /tmp/my-box

root # vagrant init my-box

root # vagrant up --provider libvirt

root # vagrant ssh

This is the Lime-JeOS SLE12 Linux System...
vagrant@linux:~>

Vagrant with Docker

Building boxes for the libvirt, VMware or VirtualBox providers requires to build images
with the disk format required by the provider. A Docker based box, however, has no
such requirements. Therefore building a Docker based box for Vagrant in KIWI does not
differ from building a regular Docker image as described in Chapter 9, Docker images.

64

https://github.com/mitchellh/vagrant/tree/master/keys
https://github.com/mitchellh/vagrant/tree/master/keys
https://vagrantcloud.com/

11 PXE Image / Thin Clients

Table of Contents

11.1. Building PXE IMAZES ..ccceeerurrrrreeeeeeeiereiireeeteeeeeeeeesesnsereeeeeesssssssssnsssssaeeesssssssssssnnsnnes 65
11.2. PXE Configuration Filesccceiiiiririiiiiiiiieieieeirrciiiireeeeeeeeeseeineeeeeeeeesssssnnnnneeeees 66
11.3. The PXE Client Configuration File SYyNtaxccccccceeeeeeeerinneeiiineeeeeeeeeseessssneeeeeeees 67
11.4. HardWare GTOUPIIIE ...ccceevvvrrreeeeeeeeeeneenrinrreeeeeeeeeessssssnssseeeeeeeesssssssssssssssseeeessssssssssnssnns 76

PXE is a network boot protocol that is shipped with most BIOS implementations. The protocol
sends a DHCP request to get an IP address. When an IP address is assigned, it uses the TFTP
protocol to download a Kernel and boot instructions. Contrary to other images built with
KIWI, a PXE image consists of separate boot and system images, since both images need to be
made available in different locations on the network boot server.

PXE Image Description Templates

KIWI comes with many image description templates. It is recommended to use them
as a basis for your own image descriptions. To do so, copy the respective directory
containing the image description of your choice to you working directory and adjust
it according to your needs.

PXE image templates are shipped with the package kiwi-desc-netboot. They are in-
stalled to /usr/share/kiwi/image/netboot.

Just Enough Operating System (JeOS) Templates

The package kiwi-templates contains ready-to-use JeOS templates. They are installed
to /usr/share/kiwi/image/*-Je0S/. These templates can be used without any mod-
ification to build images containing a minimal operating system. The template direc-
tory is in KIWI's search path, therefore it is sufficient to only specify the name of the
*-Je0S directory on the KIWI command line. Get a list of available templates with
the following command:

(cd /usr/share/kiwi/image/ && ls -d1 *-Je0S)

11.1. Building PXE Images

The following example shows how to build a Just enough Operating System (JeOS) based on
SUSE Linux Enterprise 12:

kiwi --build suse-SLE12-community-JeOS --add-profile netboot --type pxe -d /tmp/mypxe-result

65

PXE Configuration Files

This command generates a compressed root file system image which is deployed as an over-
layfs-based union system. To use the image, all image parts need to be copied to a PXE boot
server. If you have not set up such a server, refer to Appendix B, Setting Up a Network Boot
Server for instructions. The following example assumes you have created the PXE image on
the boot server itself (if not, use scp to copy the files on the remote host).

1. Change into the build directory:

cd /tmp/mypxe-result

2. Copy the initrd and the kernel to /srv/tftpboot/boot/initrd:

cp initrd-netboot-suse-SLES12.x86 64-2.1.1.9gz /srv/tftpboot/boot/initrd
cp initrd-netboot-suse-SLES12.x86 64-2.1.1.kernel /srv/tftpboot/boot/linux

3. Copy the system image and its md5 sum to /srv/tftpboot/image:

cp LimeJeO0S-SLE12-Community.x86 64-1.13.1 /srv/tftpboot/image
cp LimeJe0S-SLE12-Community.x86 64-1.13.1.md5 /srv/tftpboot/image

4. Copy the image boot configuration to /srv/tftpboot/KIWI/config.default. See Sec-
tion 11.2, “PXE Configuration Files” for details.

cp LimeJe0S-SLE12-Community.x86 64-1.13.1.config \
/srv/tftpboot/KIWI/config.default

5. Adjust the PXE configuration file. it controls which kernel and initrd is loaded
and which kernel parameters are set. A template has been installed at /srv/tftp-
boot/pxelinux.cfg/default with the kiwi-pxeboot package. The minimal configura-
tion required to boot the SLE 12 JeOS looks like to following:

DEFAULT KIWI-Boot

LABEL KIWI-Boot
kernel boot/linux
append initrd=boot/initrd
IPAPPEND 1

LABEL Local-Boot
localboot 0

2015-07-31 - fs: The content above differs from what is installed with kiwi-pxeboot.

6. Connect the client to the network and boot it.

11.2. PXE Configuration Files

2015-12-02 - fs: Removed everything concerning hwtype.MAC, since it did not seem rele-
vant All PXE boot based deployment methods are controlled by configuration files lo-
cated in /srv/tftpboot/KIWI on the PXE server. Such a configuration file can either
be client-specific (config.MAC ADDRESS, for example config.00.AB.F3.11.73.C8), group-
specific (config.GROUP, see Section 11.4, “Hardware Grouping” for details) or generic
(config.default). In an environment with heterogeneous clients, this allows to have a de-
fault configuration suitable for the majority of clients, to have configurations suitable for a
group of clients (for example machines with similar or identical hardware) and individual
configurations for selected machines.

Configuration files are assigned to a client in the following order, the first matching file is used:

66

The PXE Client Con-
figuration File Syntax

1. config.MAC ADDRESS
2. config.GROUP
3. config.default

When building the OEM image a template configuration file named IMAGE NAME.config
(for example LimeJe0S-SLE12.x86 64-1.13.1.config) is generated. Copy this file to /srv/
tftpboot/KIWI/config.default on the PXE server and adjust it according to your needs. If
you need client- or group-specific configuration files, use the final version of config.default
as a template.

11.3. The PXE Client Configuration File
Syntax

The configuration file contains data about the image and about configuration, synchroniza-
tion, and partition parameters. The configuration file has got the following general format:

AOEROOT=device

COMBINED IMAGE=1

CONF="src;dest;srvip;bsize; [hash],...,src;dest;srvip;bsize;[hash]"
DISK="device"

FORCE_KEXEC=1

IMAGE="device;name;version;srvip;bsize;compressed,...,"

KIWI BOOT TIMEOUT="seconds"

KIWI INITRD="path-to-initrd"

KIWI KERNEL="path-to-kernel"

KIWI KERNEL OPTIONS="optl opt2 ..."
NBDROOTNBDROOT="ip-address;export-name;device;swap-export-name;swap-device;write-export-name;wr:
NFSROOT="ip-address;path"

PART="size;id;Mount,...,size;id;Mount"
RAID="raid-level;devicel;device2;..."

REBOOT IMAGE=1

RELOAD CONFIG=1

RELOAD IMAGE=1

UNIONFS CONFIGURATION="rw-partition,compressed-partition,container-fs"

Quoting the Values

config.MAC ADDRESS is sourced by the Bash, so the same quoting rules as for the Bash
apply.

Not all configuration options need to be specified. The following configuration is an example
for an image based on a read-write file system stored on a local disk:

DISK="/dev/sda"
PART="5;S;x,x;L;/"
IMAGE="/dev/sda2;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096"

Refer to the following list for details on each configuration option:

AOEROOT
Mount the system image root file system remotely via AoE (ATA over Ethernet). This re-
quires a server exporting a block device representing the root directory of the system im-
age via the AoE subsystem. The block device could be a partition of a real or a virtual disk.
To use the AoE subsystem it is recommended to install the aoetools and vblade packages
from http://download.opensuse.org/repositories/server:/ltsp.

67

http://download.opensuse.org/repositories/server:/ltsp

The PXE Client Con-
figuration File Syntax

When these packages are installed, partitions can be exported with the vbladed command.
The following example shows how to export /dev/sdbl via AoE with a major value of 0
and minor of 1 on the ethO interface.:

vbladed 0 1 eth® /dev/sdbl

To be able to use the device KIWI needs the information which AoE device contains the
root file system. In this example this is the device /dev/etherd/e0.1:

AOERO0T=/dev/etherd/e0.1

In case of a compressed read-only image with overlayfs, the AOEROOT variable can also
contain a second device for the write actions:

AOER00T=/dev/etherd/e0.1, /dev/raml

Writing to RAM as in the example above, is the default. You also can specify another AoE
location or a local device for writing the data.

COMBINED_ IMAGE

If set to a non-empty string, indicates that the boot and the system image need to be
combined into a single bootable image. The first image defines the read-write part and
the second image defines the read-only part.

CONF, VENDOR CONF

Specifies a comma-separated list of source:target configuration file names. The source
corresponds to the path on the TFTP server. It is downloaded to target on the client. The
download is only done when the file is missing on the client or has a different md5-sum
(in case the md5sum hash is supplied with hash).

To achieve this, a list of CONF files (and VENDOR CONF) files that generated by KIWI and
stored on the client (/etc/KIWI/InstalledConfigFiles) is compared to the CONF data
gathered from the configuration file (for example config.default), if supplied.

Configuration files selected for comparison are those with same destination path (dest). If
the destination path is same for more than one configuration file, only the last one is used
(and VENDOR CONF always take s precedence over CONF). By comparing configuration file
lists present in the current CONF and VENDOR CONF variables and with the local list, the
following actions can result:

Table 11.1. Configuration Files Synchronization Possibilities

File from CONF,|InstalledConfigFiles Action

VENDOR_CONF

hash_a hash_a nothing, keep

hash_a hash b download from server

none hash download from server

hash none download from server

none none nothing, keep

present not present download from server (re-
gardless of hash)

not present present delete on client (regardless
hash)

68

The PXE Client Con-
figuration File Syntax

Note that actual configuration files (or their md5sum hashes) on the client machine are
not tested—only data from the list file /etc/KIWI/InstalledConfigFiles is used to de-
termine which files need to be synchronized. This means that actual configuration files can
be altered or even be deleted without triggering any action. On the other hand, if the list
file is changed or deleted, an action could be triggered although the actual configuration
files have not changed.

DISK
Specifies the storage device. Only to be used together with PART, for example:

DISK=/dev/hda

FORCE_KEXEC
During the initial deployment process KIWI checks if the running Kernel is the same as the
Kernel installed via the system image. If there is a mismatch, KIWI activates the installed
kernel by calling kexec. Kexec is a tool to boot to another kernel from the currently running
one. The system boots faster, because the hardware initialization phase and the boot loader
are skipped..

If FORCE_KEXEC is set to a non-empty string kiwi will also perform kexec if the Kernel
versions matches.

IMAGE
Specifies the image to be downloaded and the device for the root file system.

IMAGE='device;name;version;srvip;bsize;compressed"
The following parameters are supported:

device
2015-11-24 - fs: Please check whether the following is correct

The device the root file system should be installed on. Can either be a RAM disk (for
example /dev/raml or a block device (for example /dev/hda2).

When using a RAM disk, note that you cannot use /dev/ram0, since it is already re-
served for the initial RAM disk set up by the installation system. Use /dev/raml in-
stead.

When using a block device, always make sure to also create a corresponding PART entry
defining the partitioning. Note that a partitioning scheme defined with PART always
defines the first partition as swap and the second partition as the root file system.
Therefore device needs to point to the second partition (for example /dev/hda2).

name
2015-11-24 - fs: Is "##.#" used as a wild card for the version string?

File name of the image. Use the character “#” as a wild card for the version number,
for example LimeJe0S-SLE12-Community.x86 64-#.##.4#.

version
Version string, for example 1.13.1.

srvip
Specifies the server IP address for the TFTP download. Must always be indicated, ex-
cept in PART.

69

The PXE Client Con-
figuration File Syntax

bsize
Specifies the block size for the TFTP download. Must always be indicated, except in
PART. If the block size is too small according to the maximum number of data packages
(32768), linuxrc will automatically calculate a new block size for the download.

compressed
Specifies if the image file on the TFTP server is compressed and handles it accordingly.
To specify a compressed image download only the keyword compressed needs to be
added. If compressed is not specified the standard download workflow is used.

The name of the compressed image needs to contain the suffix .gz and the image needs
to be compressed with the gzip tool. Using a compressed image will automatically
deactivate the multicast download option of atftp.

IMAGE="'/dev/sda2;suse.i686.9z;1.2.8;192.168.100.2;4096; compressed’

The download will fail if you specify compressed and the image is not com-
pressed. It will also fail if you don’t specify compressed but the image is com-
pressed.

KIWI_BOOT TIMEOUT
Specifies the number of seconds to wait at the boot loader screen when doing a local boot
before booting the default boot entry. The default is 10.

KIWI INITRD
Specifies the KIWI initrd to be used for a local boot of the system. The value must be set
to the name of the initrd file which is used via PXE network boot. If the standard TFTP
setup suggested with the kiwi-pxeboot package is used all initrd files reside in /var/lib/
tftpboot/boot/. However, because the TFTP server does a change root (chroot /var/
lib/tftpboot) you need to specify the initrd file as in the following example:

KIWI INITRD=/boot/name-of-initrd-file

KIWI KERNEL
Specifies the Kernel to be used for a local boot of the system The same path rules as
described for KIWI INITRD apply for the kernel setup:

KIWI KERNEL=/boot/name-of-kernel-file

KIWI KERNEL OPTIONS
Specifies additional command line options to be passed to the Kernel when booting from
disk. For instance, to enable a splash screen, you might use

KIWI KERNEL OPTIONS="vga=0x317 splash=silent"

NBDROOT

Mount the system image root file system remotely via NBD (Network Block Device). This
requires a server which exports the root directory of the system image via a specified
export name. The Kernel provides the block layer, together with a remote port that uses
the nbd-server program. For more information on how to set up the server, see man 1 nbd-
server. The Kernel on the remote client can set up a special network block device named
/dev/nb0 using the nbd-client command. After this device exists, the mount program is
used to mount the root file system. To allow the KIWI boot image to use that, the following
information must be provided:

NBDROOT=NBD. Server. IP.address;\
NBD-Export-Name;/dev/NBD-Device;\

70

The PXE Client Con-
figuration File Syntax

NBD - Swap - Export-Name; /dev/NBD-Swap-Device;\
NBD-Write-Export-Name;/dev/NBD-Write-Device

The server IP and the export name are mandatory parameters, all other parameters are
optional. The default device names are:

« NBD-Device: /dev/nbdo,
+ NBD-Swap-Device: /dev/nbd1l
+ NBD-Write-Device: /dev/raml

Defining a swap device is optional. It is only set up if the client has less than 48 MB of
RAM. The optional NBD-Write-Export-Name and NBD-Write-Device define a write copy-
on-write (COW) location for the root file system. A separate write device is only used
together with a union setup based on, for example, overlayfs.

NFSROOT
Mount the system image root file system remotely via NFS (Network File System). This
requires a server which exports the root file system of the network client in such a way
that the client can mount it read/write. To do that, the boot image must know the server IP
address and the path name where the root directory exists on this server. The information
must be provided like follows:

NFSROOT=NFS.Server.IP.address;/path/to/root/tree

PART
Specifies the partitioning data. Comma-separated blocks contain size, partition type and
mount point:

PART='size;type;mountpoint,...,size;type;mountpoint'
In addition, the following rules apply:

+ size is measured in megabytes (MB).

+ type can be one of the following values:

S or 82: swap partition

L or 83: linux partition

V or 8e: LVM partition

fd: RAID partition

41: prep-partition for IBM POWER

+ The first element of the list must define the swap partition.

The swap partition must not contain a mount point. A lowercase letter x needs to be
set instead.

« The second element of the list must define the root partition.

« If a partition should take all the space left on a disk one can set a lower x letter as size
specification.

The following example defines a 2 GB swap partition (2000;S;x) and a root partition
occupying the remaining space on the disk (x;L;/):

PART='2000;S;x,x;L;/"

71

Use a Different
Download Protocol

RAID
In addition to the PART line it is also allowed to add a raid array setup. The first parameter
of the RAID line is the raid level. So far only raidl (mirroring) is supported. The second
and third parameter specifies the raid disk devices which make up the array. If a RAID line
is present all partitions in PART will be created as raid partitions. The first raid is named
mdO the second one md1 and so on. It is required to specify the correct raid partition in the
IMAGE line according to the PART setup. A typical raid image setup could look like this:

DISK=/dev/sda

RAID='1;/dev/sda;/dev/sdb'
IMAGE="'/dev/mdl;LimeJe0S-openSUSE-##.#.1686;1.11.3;192.168.100.2;4096'
PART='5;S;x,2000;L;/"'

REBOOT IMAGE
If set to a non-empty string, this will reboot the system after the initial deployment process
is done. This means the system is rebooted before the system init process is activated. If
the machine's default boot setup is to boot via PXE it will again boot from the network.

RELOAD CONFIG
If set to a non-empty string, this forces all configuration files to be loaded from the server.
The primary purpose of this setting is to aid debugging. The option only applies to disk-
based systems.

RELOAD IMAGE
If set to a non-empty string, this forces the image to be loaded from the server even if the
image on the disk is up-to-date. The primary purpose of this setting is to aid debugging.
The option only applies to disk-based systems.

UNIONFS CONFIG
Netboot images may use overlayfs as a container file system in combination with a com-
pressed system image. The recommended compressed file system type for the system im-
age is overlayfs.

UNIONFS CONFIG=/dev/sda2,/dev/sda3,overlayfs

In this example the first device /dev/sda2 represents the read/write file system and the
second device /dev/sda3 represents the compressed system image file system.

The union file system overlayfs is then used to cover the read/write layer with the read-
only device to one read/write file system. If a file on the read-only device is going to
be written, the changed inodes are part of the read/write file system. Note the device
specifications in UNIONFS CONFIG must correspond to the IMAGE and PART information.
The following example should explain the interconnections:

DISK=/dev/sda
IMAGE="'/dev/sda3;image/myImage;1.1.1;192.168.1.1;4096'
PART='200;S;x,300;L;/,x;L;x'

UNIONFS CONFIG=/dev/sda2,/dev/sda3,overlayfs

As the second element of the PART list must define the root partition it is absolutely im-
portant that the first device in UNIONFS CONFIG matches this device as read/write device.
The second device of UNIONFS CONFIG needs to match the given IMAGE device name.

11.3.1. Use a Different Download Protocol

By default all downloads controlled by the KIWI linuxrc code are performed by an atftp call
using the TFTP protocol. With PXE the download protocol is fixed and thus you cannott change

72

RAM Only Image

the way how the kernel and the boot image (initrd) is downloaded. As soon as Linux takes
over, the download protocols HTTP, HTTPS and FTP are supported too. KIWI uses of the curl
program to support the additional protocols.

To select one of the additional download protocols the following kernel parameters need to
be specified ion /srv/tftpboot/pxelinux.cfg/default:

kiwiserver
Name or IP address of the server who implements the protocol

kiwiservertype
Name of the download protocol which could be one of http, https or ftp

To set up this parameters edit the file /srv/tftpboot/pxelinux.cfg/default on your PXE
boot server and change the append line accordingly. Note that all downloads except for kernel
and initrd are now controlled by the given server and protocol. You need to make sure that this
server provides the same directory and file structure as initially provided by the kiwi-pxeboot
package.

11.3.2. RAM Only Image

If there is no local or remote storage for mounting the root file system, the image can be
stored into the main memory of the client. The machine needs to be equipped with sufficient
memory to host the RAM disk and provide enough additional memory for system operation.
Set up the machine similar to the following example:

1. Use a read-write file system in config.xml, for example filesystem="ext3"

2. Create config.MAC

IMAGE="'/dev/raml;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096"'

11.3.3. Union Image

As shown in UNIONFS CONFIG it is possible to use the union file system with overlayfs, to
combine two file systems into one. In case of thin clients there is often the need for a com-
pressed file system because of space limitations. However, all supported compressed file sys-
tems only allow read-only access. Combining a read-only file system with a read-write file
system is a solution for this problem. KIWI uses squashfs compressing file systems. To create an
image with a compressed root file system, make sure the file system attribute in config.xml
contains squashfs. 2015-11-25 - fs: where should this attribute be set? A link to an example or
an example right here is needed.

When an image contains a compressed root file system, it can either be downloaded to the
local machine or be mounted remotely. The following setups can be configured:

« Example 11.1, “ Download Compressed Image to Local Storage, Write to Local Storage ”
« Example 11.2, “ Download Compressed Image to Local Storage, Write to RAM ”

« Example 11.3, “ Mount Compressed Image from Remote, Write to Local Storage ”

« Example 11.4, “ Mount Compressed Image from Remote, Write to RAM ”

« Example 11.5, “ Mount Compressed Image from Remote, Write to Remote ”

73

Union Image

Example 11.1. Download Compressed Image to Local Storage, Write to
Local Storage

DISK=/dev/sda

PART='5;S;x,400;L;/,x;L;x"
IMAGE="'/dev/sda2;suse-##.#-pxe-client.i386;1.2.8;192.168.100.2;4096"'
UNIONFS CONFIG=/dev/sda3,/dev/sda2,overlayfs

KIWI INITRD=/boot/initrd

Example 11.2. Download Compressed Image to Local Storage, Write to
RAM

DISK=/dev/sda

PART='5;S;x,400;L;/"'
IMAGE="'/dev/sda2;suse-##.#-pxe-client.i386;1.2.8;192.168.100.2;4096"'
UNIONFS CONFIG=tmpfs,/dev/sda2,overlayfs

Example 11.3. Mount Compressed Image from Remote, Write to Local
Storage

Depending on whether the remote image is served via AoE, NBD, or NFS, the configuration
differs:

AoE
PART='5;S;x,x;L;x"

AOER00T=/dev/etherd/e0.1,/dev/sda2
UNIONFS CONFIG=/dev/sda2,aoe,overlayfs

NBD
PART='5;S;x,x;L;x"

NBDR0O0T=192.168.100.7; rootl;/dev/nbd0;;;;/dev/sda2
UNIONFS CONFIG=/dev/sda2,nbd,overlayfs

NFS
PART='5;S;x,x;L;x"'

NFSR0O0T="192.168.100.2;/srv/kiwi-read-only-path"
UNIONFS CONFIG=/dev/sda2,nfs,overlayfs

Example 11.4. Mount Compressed Image from Remote, Write to RAM

Depending on whether the remote image is served via AoE, NBD, or NFS, the configuration
differs:

AoE

AOERO0T=/dev/etherd/e0.1
UNIONFS CONFIG=tmpfs,aoe,overlayfs

NBD

NBDR0O0T=192.168.100.7; rootl;/dev/nbd0
UNIONFS CONFIG=tmpfs,nbd,overlayfs

74

Split Image

NFS

NFSRO0T="192.168.100.2;/srv/kiwi-read-only-path"
UNIONFS CONFIG=tmpfs,nfs,overlayfs

Example 11.5. Mount Compressed Image from Remote, Write to Remote

AoE

AOER00T=/dev/etherd/e0.1, /dev/etherd/el.1
UNIONFS CONFIG=aoe,aoe,overlayfs

NBD

NBDR0O0T=192.168.100.7; rootl;/dev/nbd0;swapl;/dev/nbdl;writel;/dev/nbd2
UNIONFS CONFIG=nbd,nbd,overlayfs

NFS

NFSRO0T="192.168.100.2;/srv/kiwi-read-only-path"
UNIONFS CONFIG=/srv/kiwi-read-write-path,nfs,overlayfs

Check Remote Access

It is recommended to check the accessibility of the read and, if applicable, the read-
write devices from a client machine in the same network. If data can be read from
and, if applicable, written to these devices, the image should also be able to access
these devices when booting. If the PXE boot fails, device accessibility problems can
be ruled out upfront.

11.3.4. Split Image

An alternative to a Union Image (see Section 11.3.3, “Union Image”)is a split image that
combines the read and read-write partitions with the COMBINED IMAGE method. This allows

to use different file systems without the need for an overlay file system.

Edit config.xml and add a split type plus a split section describing the temporary and per-

sistent parts:

<type fsreadonly="squashfs"

image="split" fsreadwrite="ext3" boot="netboot/suse-..."/>
<split>
<temporary>
<!-- allow RAM read/write access to: -->

<file name="/mnt"/>
<file name="/mnt/*"/>

</temporary>

<persistent>
<!-- allow DISK read/write access to: -->
<file name="/var"/>
<file name="/var/*"/>
<file name="/boot"/>
<file name="/boot/*"/>
<file name="/etc"/>
<file name="/etc/*"/>
<file name="/home"/>
<file name="/home/*"/>

</persistent>

</split>

75

Mounting the Root File Sys-
tem from a Remote Server

</type>

Create a config.MAC file similar to the following::

IMAGE='/dev/sda2;suse-##.#-pxe-client.i686;1.2.8;192.168.100.2;4096,\
/dev/sda3;suse-##.#-pxe-client-read-write.i686;1.2.8;192.168.100.2;4096'

PART="'200;S;x,500;L;/,x;L"

DISK=/dev/sda

COMBINED IMAGE=yes
KIWI_INITRD=/boot/initrd

11.3.5. Mounting the Root File System from a Re-
mote Server

Instead of installing the image on a local storage device, it is also possible to mount the root
file system remotely via AoE, NBD, and NFS.

Example 11.6. Root Tree Over AoE

Use the vbladed command on the remote server to bind a block device to an Ethernet inter-
face. The block device can be a disk partition or a loop device (losetup) but not a directory.
For example:

vbladed 0 1 eth® blockdevice

Create a config.MAC pointing to the exported AoE device. For the example above, this would
be:

AOERO0T=/dev/etherd/e0.1

Example 11.7. Root Tree Over NBD
Export the KIWI prepared tree on the NBD server and use a config.MAC file similar to the
following example:

NBDR0O0T=192.168.100.7; rootl;/dev/nbd0

Example 11.8. Root Tree Over NFS

Export the KIWI prepared tree via NFS and use a config.MAC file similar to the following
example:

NFSR00T=192.168.100.7;/tmp/kiwi.nfsroot

11.4. Hardware Grouping

As explained in the section Section 11.2, “PXE Configuration Files”, three different types of
configuration files containing image and deployment information exist: generic, client-specific
and group-specific. This section explains how to set up groups and group-specific configuration
files.

Creating groups is useful if you have a subgroup of identical or similar clients that will use
the same configuration file in an otherwise heterogeneous group of clients. Instead of creating
and maintaining multiple config.MAC ADDRESS with identical content, you create a single
config.GROUP file.

76

The Group Definition File

To add one or more groups requires to create a group definition file (config.group defining
the groups and the clients belonging to each group, and a configuration file config.GROUP
for each group containing image and deployment information.

11.4.1. The Group Definition File

The group definition file defines one or more groups and assigns client machines by MAC
address to these groups. The file is name config.group and needs to be placed in /srv/
tftpboot/KIWI/ on the PXE boot server.

The following example config.group defines three groups groupl, group2, and group3 and
assigns two client machines to each group:

KIWI GROUP="groupl, group2, group3"

groupl KIWI MAC LIST="11:11:11:11:11:11, 00:11:00:11:22:CA"
"group2 KIWI MAC LIST="00:22:00:44:00:4D, 99:3F:21:A2:F4:32"
"group3 KIWI MAC LIST="00:54:33:FA:44:33, 84:3D:45:2F:5F:33"

The following parameters can be set in config.group:

KIWI_GROUP
Contains a list of groups that should be defined. At least one group name needs to be
specified. The names are separated by a comma and a space. Although there is no limit
for the number of groups, it should be kept to a minimum for reasonable manageability.

Valid group names are made up of uppercase and lowercase letters, and may use numeric,
and underscore characters. The same rules used to define Bash or sh variable names apply.
The following example contains valid names:

KIWI GROUP="groupl, group2, group3"

GROUP NAME KIWI MAC LIST
This parameter is used to assign MAC addresses to the groups defined with KIWI GROUP.
The name of this parameter depends on the group it represents. In our example the groups
groupl, group2, group3 are defined, so the corresponding parameters are:

groupl KIWI MAC LIST
group2 KIWI MAC LIST
group3 KIWI MAC LIST

These parameters contain a comma-separated list of MAC addresses that should be as-
signed to the specified group. MAC addresses always need to be specified with uppercase
letters, otherwise they will not match. If the list of addresses is very long (several thousand
entries), the client's boot process my be slowed down.

11.4.2. The Group Configuration File

In addition to the group definition file config.group, each defined group requires a
config.GROUP_NAME file containing the image and deployment information. Content-wise this
file is identical to the config.default or config.MAC ADDRESS. See Section 11.3, “The PXE
Client Configuration File Syntax” for details. These files need to be placed in /srv/tftp-
boot/KIWI/ on the PXE server. For our example, the following files would be needed:

/srv/tftpboot/KIWI/config.groupl
/srv/tftpboot/KIWI/config.group2

77

The Group Configuration File

/srv/tftpboot/KIWI/config.group3

11.4.2.1. Hardware-Specific Configuration Files

Some scenarios may require to provide different system configuration files to clients belonging
to the same hardware group: If grouping clients with similar hardware, but for example dif-
ferent graphic cards, it may be necessary to provide graphic card specific configuration files. If
setting up a PXE server supporting different locations within your organization, you may want
to deliver country specific configurations for the system language and the keyboard layout.

The concept is similar to the one used with the group definition a configuration files. A list of
MAC addresses that will receive individual configuration files is specified with two hardware
mapping element in the group configuration file. A list of system configuration files for each
hardware mapping element is specified in a hardware mapping configuration file.

Using hardware specific configuration files within a group is optional. It allows to use a single
group configuration file, but to provide additional configuration files that will override the
defaults provided by the CONF parameter. The same functionality could theoretically also be
achieved by specifying different groups using different CONF parameters, but that would be
less flexible and produce an unnecessary maintenance overhead.

11.4.2.1.1. The Hardware Mapping Elements

To use the hardware linking mechanism, two additional elements needs to be added to the
group details file (config.GROUP NAME. These two elements link hardware specific configu-
rations to the appropriate systems by MAC address. A general example would look like this:

HARDWARE_MAP="VENDORNAME MODEL"
VENDORNAME MODEL HARDWARE_MAP="MACIMAC2"

The following parameters can be set in config.group:

HARDWARE MAP
This element follows the same rules as defined by the KIWI_GROUP element. However,
this variable will create sub-groups used to ensure multiple types of hardware vendors can
be used within the same group. The name of the group(s) should be clearly defined, and
a good convention to follow would be to use a combination of the vendor name with the
model number or type. This would allow for cases where the same vendor is used, but
differences between alternative models requires different maps to be used.

HARDWARE MAP="myvendor foo01l000 myvendor f002000"

HARDWARE MAP NAME HARDWARE_MAP
This element behaves identical to the GROUP NAME_KIWI_MAC_LIST element. It lists all
MAC addresses that need to be linked to a hardware map. Any host defined with-
in the list will receive configuration files that have been specifically defined in a
hardware_config. HARDWARE MAP file (in addition to any files defined within a CONF ele-
ment).

myvendor fool000 HARDWARE MAP="11:11:11:11:11:11"
myvendor fo002000 HARDWARE MAP="00:11:00:11:22:CA"

11.4.2.1.2. The Hardware Mapping Configuration File

When the hardware map has been defined, the last step is to ensure configuration spe-
cific elements are linked to the host(s) in question. This is done by creating a new

78

The Group Configuration File

hardware_config.hardware map file. The content of the file only contains one element
VENDOR_CONF:

VENDOR CONF="'CONFIGURATIONS/xorg.conf.hardware name model;/etc/X11l/xorg.conf;192.168.100.2;40

The format of the VENDOR_CONF values is identical to the CONF variable used in the standard
host and group configurations (see Section 11.3, “The PXE Client Configuration File Syntax”).
In addition, files defined within this list will over-write any files defined in the group config-
uration, if and only if, the following requirements are met:

+ The host is assigned to the current hardware map
« The file is defined within the CONF and VENDOR_CONTF elements

NOTE: If a file is not defined in the CONF element, but is defined in the VENDOR_CONF
element, it is simply downloaded to the host as if it was a CONF file. In this case, no overwriting
will take place as it is considered a new file.

11.4.2.2. A Complete Example

The following is an example of a group that is using hardware from multiple vendors. For this
example, lets assume the group will have 10 defined hosts, seven are myvendor fo0o01000 thin
client, while the remaining three are myvendor fo002000 thin clients. We will also assume that
the differences between the two hardware models are specific to the video card and therefore
require different X drivers.

The following configuration files in /srv/tftpboot/KIWIare required:

config.group®
config.myvendor®
hardware config.myvendor f002000©

Example 11.9, “The Group Definition File config.group”

Example 11.10, “ The Group Configuration File config.myvendor ”

Example 11.11, « The Hardware Mapping Details File
hardware config.myvendor 002000 ”

®®e

Example 11.9. The Group Definition File config.group

KIWI GROUP="myvendor"

myvendor KIWI MAC LIST=
"00:00:00:00:00:01 00:00:00:00:00:0
00:00:00:00:00:03 00:00:00:00:00:0
00:00:00:00:00:05 00:00:00:00:00:0
00:00:00:00:00:07 00:00:00:00:00:08
00:00:00:00:00:09 00:00:00:00:00:0A"

2\
4\
6 \

The example group definition file contains a single group (myvendor) containing the ten thin
clients.

Example 11.10. The Group Configuration File config.myvendor

KIWI INITRD=/boot/initrd

KIWI KERNEL=/boot/linux

DISK=/dev/sda

PART='5;S;x,769;L;/,x;L;x"'
IMAGE="'/dev/sda2;exmaple-kiosk-opensuse-##.#-pxe-client.i1686;0.0.1;192.168.1.2;4096'

79

The Group Configuration File

UNIONFS CONFIG=/dev/sda3,/dev/sda2,overlayfs

RELOAD IMAGE=yes

RELOAD CONFIG=yes
CONF="'prefs.js;/home/kioskuser/.mozilla/firefox/07xvl1lty.default/prefs.js;192.168.1.2;4096,\
xorg.conf;/etc/X11/xorg.conf;192.168.1.2;4096'®

HARDWARE MAP='myvendor f002000'®

myvendor fo002000 HARDWARE MAP='00:00:00:00:00:02 00:00:00:00:00:03 00:00:00:00:00:04'®

The first seven lines define a standard KIWI configuration, while the last three lines set up a
hardware-specific configuration.

@® Specifies two default configuration files that will be copied to all clients defined in this
group: prefs. js (for Mozilla Firefox), and xorg. conf (for X Window).

® Defines the hardware map(s) (myvendor f002000 in this case) that are to be used to
provide overrides for the configuration files defined in the previous lines.

© Defines the list of hosts (by MAC address) that will receive the configuration file overrides
(the three myvendor_foo2000 clients).

Example 11.11. The Hardware Mapping Details File
hardware_config.myvendor_f002000

VENDOR CONF='xorg.conf.myvendor fo002000;/etc/X11/xorg.conf;192.168.1.2;4096,\
someconfig.cfg;/etc/sysconfig/someconfig.cfg;192.168.1.2;4096"

When the VENDOR_CONF definition is used, we are telling KIWI that all files defined within
this element, are specific to the hardware map they are linked to. As a result, all files listed
here will be transferred to a host if, and only if, the host has been linked to the hardware map
via the myvendor_foo2000 HARDWARE_MAP element. In our example the only systems that
will receive the xorg.conf.myvendor_foo2000 file will be the three myvendor_foo2000 thin
clients listed in the hardware map itself.

In this VENDOR_CONF element, two files are defined. An override xorg.conf file and an
additional file called someconfig.cfg. xorg.conf.myvendor 002000 will overwrite the
xorg.conf file that was previously transferred via the CONF element. In addition to that,
someconfig.cfg will be copied to the three myvendor_fo02000 thin clients.

As a result of this example, all ten thin clients will receive the prefs. js file defined in CONF.
The seven myvendor_foo1000 clients will receive the xorg.conf defined in CONF, while the
three myvendor_foo2000 clients will receive the specific xorg. conf defined in VENDOR CONF.
The myvendor_foo2000 clients will also get the file someconfig.cfg.

80

12 OEM Image / Preload Systems

Table of Contents

12.1. Building an OEM System and an Installation IMagecccccceeereeevinrreeeeeeeeeenssninnnnee 81
12.2. Testing the TMAZEScceeeeeiiiiriiiiiiiiieteeeeeeeecrrirreeee e e e e e sesssarereeeeeeeessssssnnnsseneeeeesssns 82
12.3. Installation IMage FIAVOTSccceeeiirereeiiiiiiiieeeeeeeeeeeiiiereeeeeeeseesssssnsrereeeeesssssssssnnnnne 82
12.4. Customizing the OEM IMAZEScccocurrrrrreeerreeereiiiiirreeeeeeeeesssssrnreeeeeeeeessssssssssseeeeeees 83
12.5. Network Based INStallationcccceeeeeeeeiiiiiiiieiiiiiiieeeeiecee et e s 86

An OEM image is a virtual disk image representing all partitions and boot loader information
the same way as on a physical disk. All flavors discussed previously in Chapter 8, VMX Image /
Virtual Disks also apply to the OEM image type. Compared to the VMX image type, an OEM
image comes with additional features. It can expand itself to a custom disk geometry and KIWI
can create installation images which embeds the OEM image for deployment from CD/DVD/
Stick and over the network via PXE.

The basic idea behind an OEM image is to provide the virtual disk data for OEM vendors to
support easy deployment of the system to physical storage media.

OEM Image Description Templates

KIWI comes with many image description templates. It is recommended to use them
as a basis for your own image descriptions. To do so, copy the respective directory
containing the image description of your choice to you working directory and adjust
it according to your needs.

OEM image templates are shipped with the package kiwi-desc-oemboot. They are in-
stalled to /usr/share/kiwi/image/oemboot.

12.1. Building an OEM System and an In-
stallation Image

The image creation process creates two images: An OEM disk image and an Installation ISO
image containing the OEM disk image. The disk image can be dumped on a physical disk on
the target system (using for example dd). The installation image can be dumped or burned to
a bootable installation medium (for example a flash disk or a DVD). When a machine is booted
from such a medium, an image deployment process (which can optionally be configured to
run without user interaction) is started. The following example shows how to build a Just
enough Operating System (JeOS) based on SUSE Linux Enterprise 12:

81

Testing the Images

kiwi --build suse-SLE12-Je0S -d /tmp/myoem-result --type oem

12.2. Testing the Images

The images can be tested using virtualization software such as QEMU, VMware, or Virtual-
Box. The OEM disk image file can b identified by the extension . raw, the installation image
either has the .iso or the . raw.install extension (also see Section 12.3, “Installation Image
Flavors”).

To test the OEM disk image using qemu, run the following commands:

cd /tmp/myoem-result
gemu LimeJe0S-SLE12.x86 64-1.13.1.raw

Alternatively, use the dd command to dump the image onto a spare hard disk or a flash disk
(this will wipe all existing data on the target device). To boot the image, select the appropriate
device for booting device in the BIOS/EFL.

cd /tmp/myoem-result
dd if=LimeJe0S-SLE12.x86 64-1.13.1.raw of=/dev/device

Note, when testing an OEM image using the virtual disk image, for example the . raw file, the
geometry of the disk image is not changed and therefore retains the disk geometry of the host
system. This implies that the re-partitioning performed for a physical disk install during the
OEM boot workflow will be skipped. 2015-11-30 - fs: Does this mean you are asked whether
you want to perform the repartitioning or not during the initial boot process?

The installation image can also be tested using virtualization software. Note that the hard disk
will be re-partitioned in this case. The following example uses gemu for testing. A virtual
hard disk is created with gemu-img prior to starting the image.

cd /tmp/myoem-result
gemu-img create /tmp/mydisk 20G
gemu -hda /tmp/mydisk -cdrom LimeJe0S-SLE12.x86 64-1.13.1.iso -boot d

12.3. Installation Image Flavors

The installation image is a bootable, self-installing image that deploys the OEM image onto
the selected storage device. The installation process is a simple image dump using the dd
command. During this process the target system remains in terminal mode.

The installation image can be created in two formats: a hybrid image suitable for CD/DVD
media and flash disks and a second one suitable for a flash disks only. The latter format
can be used if the BIOS/EFI does not support booting from hybrid images. The following
configuration snippets show the use of the installiso to create a CD/DVD iso image and
installstick attributes in configuration.xml to create a USB installation image format.

installiso
Creates an . iso file which can be burned onto a CD or a DVD or dumped on a flash disk.
The attribute hybrid="true" makes sure a hybrid iso image is created that is suitable for
both purposes. A hybrid image is the recommended format for an installation image. If
the target hardware is not able to boot from such an image, try the installstick variant
described below.

<image ...>

82

Customizing the OEM Images

<preferences>
<type image="name" installiso="true" hybrid="true">
</type>

</preferences>

</image ...>

installstick
Creates a . raw.install file which can be dumped (dd) onto a flash disk. Use this format
if your machine cannot boot from a hybrid image.

<image ...>
<preferences>

<type image="name" installstick="true">
</type>
</preferences>

</image ...>

12.4. Customizing the OEM Images

KIWI not only allows to customize the boot process of an OEM image by adding scripts to the
image but also provides many configuration options that let you customize the boot loader,
partitioning and other aspects of the image.

12.4.1. Customizing the OEM Install Process

It is possible to customize the OEM install process by providing shell scripts with the following
names. For more information on how to include the scripts into the boot image and make
them work in the boot code, see the chapter Section 3.2.1, “Boot Image Hook-Scripts”.

preHWdetect.sh
This script is executed prior to the hardware scan on the target machine.

postHWdetect.sh
This script is executed after the hardware scan on the target machine.

preImageDump.sh
This script is executed immediately prior to the OEM image dump onto the target storage
device.

postImageDump.sh
This script is executed directly after the OEM image dump onto the target storage device
when the image checksum has been successfully verified.

12.4.2. OEM Customizing Parameters
2015-12-01 - fs: oem-home* is/are? missing. Any others? All OEM customizing parameters reside
in the oemconfig tag in configuration.xml:

<image ...>
<preferences>

83

OEM Customizing Parameters

<type image="oem">
<oemconfig>
<oem-.../>
</oemconfig>

</type>
</preferences>

</image ...>

<oem-boot-title>text</oem-boot-title>
By default, the string OEM> will be used as the boot manager menu entry when KIWI
creates the GRUB configuration during deployment. The oem-boot-title element allows
you to set a custom name for the GRUB menu entry. This value can also be set at the boot
prompt by the parameter kiwi oemtitle="TITLE".

<oem-bootwait>true|false</oem-bootwait>
Specify if the system should wait for user interaction prior to continuing the initial boot
process after (default value is false). This value can also be set at the boot prompt by the
parameter kiwi oembootwait=TRUE OR_ FALSE.

<oem-inplace-recovery>true|false</oem-inplace- recovery>
Specify if the recovery archive is stored as part of the image or if the archive is to be
created at the time the image is deployed to the target storage device. This value can also
be set at the boot prompt by the parameter kiwi oemrecoveryInPlace=TRUE OR FALSE.

<oem-kiwi-initrd>true|false</oem-kiwi-initrd>
If this element is set to true (default value is false) the oemboot boot image (initrd)
will not be replaced by the initrd created by the system. This option is useful when the
system is installed on a flash disk. When booting from such a drive it is usually neces-
sary to detect the storage location on each boot. This detection process is part of the
oemboot boot image. This value can also be set at the boot prompt by the parameter
kiwi oemkboot=TRUE OR FALSE.

<oem-partition-install>true|false</oem-partition-install>
By default (false), an OEM image is installed on the specified disk on the target system.
During this process the disk is being overwritten and the original data is lost. Setting this
parameter to true, installs the image into an empty partition (that is a partition without
a file system). If the device already contains a swap partition, it will be used, otherwise
a swap file will be created. The empty partition needs to exist prior to booting the KIWI
image, otherwise the installation will fail. Setting this parameter to true also makes KIWI
ignore any other partitioning-related setting (for example oem- swap). See Section 12.4.3,
“Partition Based Installation” for more details. This value can also be set at the boot prompt
by the parameter kiwi oempartition install=TRUE OR FALSE.

<oem- reboot>true|false</oem- reboot>
If set to true, the system reboots after the OEM image has been deployed. By default this
parameter is set to false. This value can also be set at the boot prompt by the parameter
kiwi oemreboot=TRUE OR FALSE.

<oem-reboot-interactive>true|false</oem-reboot-interactive>
If set to true, the system reboots after the OEM image has been deployed. A message,
which the user needs to confirm to start the reboot is displayed. By default this para-
meter is set to false. This value can also be set at the boot prompt by the parameter
kiwi oemrebootinteractive=TRUE OR FALSE.

84

OEM Customizing Parameters

<oem- recovery>true|false</oem- recovery>

If this element is set to true (default value is false), KIWI will create a recovery archive
from the prepared root tree. The archive will appear as /recovery.tar.bz2 in the image
file. During the first boot of the image a single recovery partition will be created and the
recovery archive will be moved to that partition. A boot menu entry for recovery, that will
restores the original root tree on the system, is created. User data stored in /home will not
be affected by the recovery process. This value can also be set at the boot prompt by the
parameter kiwi_ oemrecovery=TRUE OR_FALSE.

<oem-recoverylID>partition-id</oem-recoveryID>
Specify the partition type for the recovery partition. The default is to create a Linux
partition (id = 83). This value can also be set at the boot prompt by the parameter
kiwi oemrecoveryID=ID.

<oem-silent-boot>true|false</oem-silent-boot>
Specify if the system should show boot messages (false) on the very first boot af-
ter having deployed the OEM image, or whether all boot messages should be sup-
pressed (true). This value can also be set at the boot prompt by the parameter
kiwi oemsilentboot=TRUE OR_FALSE.

<oem-shutdown>true|false</oem-shutdown>
Specify if the system is to be powered down after the OEM image has been deployed (the
default value is false). This value can also be set at the boot prompt by the parameter
kiwi oemshutdown=TRUE OR FALSE.

<oem-shutdown-interactive>true|false</oem-shutdown-interactive>
Specify if the system is to be powered down after the OEM image has been de-
ployed. A message, which the user needs to confirm to start the shutdown process,
is displayed. This value can also be set at the boot prompt by the parameter
kiwi oemshutdowninteractive=TRUE OR FALSE.

<oem- swap>true|false</oem- swap>
Specify if a swap partition should be created (the default is true). This value can also be
set at the boot prompt by the parameter kiwi oemswap=TRUE OR FALSE.

<oem-swapsize>size in MB</oem-swapsize>
Set the size of the swap partition in megabytes. If a swap partition is to be created and the
size of the swap partition is not specified with this optional element, KIWI will create a
swap partition of a size equal to two times of the RAM size at initial boot time. This value
can also be set at the boot prompt by the parameter kiwi oemswapMB=SIZE IN MB.

<oem-systemsize>size in MB</oem-systemsize>

Set the size the operating system is allowed to consume on the target disk. The size limit
does not include any consideration for swap space or a recovery partition. In a setup
without a systemdisk element this value specifies the size of the root partition. In a setup
including a systemdisk element this value specifies the size of the LVM partition which
contains all specified volumes. Thus, the sum of all specified volume sizes plus the sum of
the specified free space for each volume must be smaller or equal than the size specified
with the oem-systemsize. This value can also be set at the boot prompt by the parameter
kiwi oemrootMB=SIZE IN MB.

<oem-unattended>true|false</oem-unattended>
If set to true, the image deployment is done without requiring user interaction. If the
target system contains multiple disks, the first device (/dev/sda, for example) is au-

85

Partition Based Installation

tomatically selected. This value can also be set at the boot prompt by the parameter
kiwi oemunattended=TRUE OR_FALSE.

12.4.3. Partition Based Installation

The default installation method of an OEM image is to dump the entire virtual disk onto the
target disk and to re-partition the disk to match the real geometry. All data that was previously
stored on the disk will be erased.

Alternatively KIWI supports the installation into already existing partitions. This requires to
set up empty (no file system) partitions prior to deploying the image. This way already existing
data will not be touched. To activate the partition based install mode the following option
needs to be set in config.xml:

<image ...>
<preferences>

<type image="oem">
<oemconfig>
<oem-partition-install>true</oem-partition-install>
</oemconfig>

</type>
</preferences>

</image ...>

With a partition-based installation, the setup differs from the default, disk-based installation
in the following ways:

« The boot loader will be set up to boot the installed system only. If a multi-boot setup is
required, it needs to be manually configured by the user after the initial boot.

« The parameter oem-home*, oem-swap*, and oem-systemsize for system, swap and home
are ignored. In this mode KIWI will not create additional partitions. If a swap partition
exists, it will automatically be used, if not, a swap-file will be created.

+ There is no support for a remote (PXE) OEM installation, because KIWI needss to loop-mount
the disk image and need to address specific regions inside of the image. Such operations
are not implemented for remote access

12.5. Network Based Installation

Instead of manually dumping the OEM image on the target device or creating a KIWI installa-
tion CD or flash disk, the image can alternatively be downloaded from a PXE boot server over
the network. This requires a PXE network boot server to be setup as explained in Chapter 11,
PXE Image / Thin Clients. If your PXE server is running the following steps are required to set
up the installation process over the network:

1. Make sure to create an installation PXE TAR archive along with your OEM image by
setting the following option in configuration.xml:

<image ...>
<preferences>

<type image="oem" installpxe="true"....>

86

Network Based Installation

</type>
</preferences>

</image ...>

Create the image, unpack the resulting IMAGE NAME . tgz file to a temporary directory and
copy the initrd and kernel images to the PXE server:

mkdir /tmp/pxe && cd /tmp/pxe

tar -xf PATH_TO/IMAGE NAME .tgz
scp initrd-oemboot-*.install.* PXE SERVER IP:/srv/tftpboot/boot/initrd
scp initrd-oemboot-*.kernel.* PXE SERVER IP:/srv/tftpboot/boot/linux

Also copy the system image and the md5 sum to the PXE boot server:

scp IMAGE FILE.xz PXE SERVER IP:/srv/tftpboot/image/
scp IMAGE FILE.md5 PXE SERVER IP:/srv/tftpboot/image/

Copy the kernel command line parameters from IMAGE FILE.append. Edit your PXE con-
figuration (for example pxelinux.cfg/default) on the PXE server and add these para-
meters to the append line.

Optionally the image and its md5sum can be stored on an FTP or HTTP server specified
via the parameters kiwiserver =IP_ADRESS and kiwiservertype =HTTP_HTTPS_OR_FTP.
In this case make sure to copy the system image and md5 file to the correct location
on the server. KIWI searches the image at SERVER R00T/image (for example http://
www.example.com/image/IMAGE FILE.xz). Note that initrd and Linux Kernel are always
loaded via PXE.

87

88

13 Xen Para- and Full virtual Images

Table of Contents

13.1. Building a DOmO IMAEGEcceeeeuurrririreeerieereiiirrteeeeeeeeesssssserreeeeeeeessssssnnssnneeeesesssssanns 89
13.2. Testing the DOMO IMAZEcceeeeuuuiiriiiieeeeieereiiiiireeeeeeeeesssrirrreeeeeeeeesssssnnnenneeeeeeesanns 90
13.3. Building a Paravirtualized Xen Guest IMAagZecccevvumrerreeeeerierreriinrieeeeeeeeeeessssenneee 90
13.4. Building a Fully Virtualized Xen GUESLcccceerrerrierrrreeeeeeeeenriiieereeeeeeeeeeeeeesnnnneeeens 90
13.5. Using the GUESt IMAZES ..ccceeerreiiiirriieeeeeeeieeeiiiiieeeeeeeeseesessnreeeeeeeeesssssssnsssseeeeeessssnnns 90

A Xen image is a virtual disk like a vmx but with the Xen kernel installed for domO or para
virtual guest images. For fully virtualized guest images any Kernel, for example kernel-de-
fault, my be used together with the Xen kernel modules.

A Xen image can only be booted on a Xen domO server. A Xen guest is booted via a boot
infrastructure. For paravirtual images pyGrub or pvGrub can be used, while for HVM (fully
virtualized) a special hvmloader is used. Xen extracts boot information from the given image
and boots the guest. Depending on the guest type, also the boot loader configuration needs to
be read. This puts some constraints on the configuration which are addressed by KIWI.

Xen Image Description Templates

KIWI comes with many image description templates. It is recommended to use them
as a basis for your own image descriptions. To do so, copy the respective directory
containing the image description of your choice to you working directory and adjust
it according to your needs.

There are no special templates for Xen images. You may either use OEM or VMX image
templates. OEM image templates are shipped with the package kiwi-desc-oemboot.
They are installed to /usr/share/kiwi/image/oemboot. VMX image templates are
shipped with the package kiwi-desc-vmxboot. They are installed to /usr/share/ki-
wi/image/vmxboot.

13.1. Building a DomO Image

The following example shows how to build a Just enough Operating System (JeOS) based
on SUSE Linux Enterprise 12. The example adds a xenFlavour profile which builds a domO
image for the OEM image type.

kiwi --build suse-SLE12-Je0S -d /tmp/myoem-result --type oem \
--add-profile xenFlavour

89

Testing the DomO Image

13.2. Testing the DomO Image

The domO represents the most privileged layer with access to the hardware. Running such an
image in a fully virtualized system like Qemu, as shown below, is only suitable for testing
purposes. For production system this is not supported and suffers from a major performance
penalty. To test the image with gemu, run the following commands:

cd /tmp/myoem-result
gemu-img create mydom@ 10g
gemu -cdrom LimeJe0S-SLE12.x86 64-1.13.1.install.iso -hda mydom®@ -boot d

When booted mydomO is a Xen domO from which other Xen guests can be started.

13.3. Building a Paravirtualized Xen
Guest Image

The following example shows how to build a Just enough Operating System (JeOS) based
on SUSE Linux Enterprise 12. The example again uses the xenFlavour profile but builds a
simple vimx image. The result is a disk image with kernel-xen prepared for paravirtual boot via
GRUB2. To boot such a guest a pvGrub or pyGrub machine configuration supporting GRUB2
must be provided.

kiwi --build suse-SLE12-Je0S -d /tmp/myvmx-result --type vmx \
--add-profile xenFlavour

13.4. Building a Fully Virtualized Xen
Guest

The following example shows how to build a Just enough Operating System (JeOS) based
on SUSE Linux Enterprise 12. Contrary to the paravirtual guest image this example builds a
simple vmx image including the standard kernel plus some kernel modules required by Xen.
To boot such a guest, a hvmloader machine configuration must be provided.

kiwi --build suse-SLE12-Je0S -d /tmp/myvmx-result --type vmx \
--add-profile xenFlavourHVM

13.5. Using the Guest Images

To run a domain U the Xen tool xI needs to be called in with a domain U configuration file:

x1 create -f CONFIG-FILE

For paravirtual guest images KIWI supports the creation of the configuration file according to
information provided with the machine element of the KIWI configuration file config.xml:

<image ...>
<preferences ...<
<machine memory="512" domain="domU">
<vmdisk id="0" device="/dev/xvda" controller="ide"/>
<vmnic interface=""/>
</machine>

</preferences>

90

Using the Guest Images

</image>

If this information exists, KIWI creates a file with the extension .xenconfig. Note that
not all possible configuration options are supported by the KIWI Xen configuration file cre-
ator. For fully virtualized images there is currently no support to create the configuration
from KIWI. However tools like virt-manager support you setting up the machine config-
uration. Refer to the SUSE Linux Enterprise Virtualization Guide [https://www.suse.com/
documentation/sles-12/book_virt/data/book_virt.html] or the Xen Documentation [http://
www.xenproject.org/help/documentation.html] for more information.

91

https://www.suse.com/documentation/sles-12/book_virt/data/book_virt.html
https://www.suse.com/documentation/sles-12/book_virt/data/book_virt.html
https://www.suse.com/documentation/sles-12/book_virt/data/book_virt.html
http://www.xenproject.org/help/documentation.html
http://www.xenproject.org/help/documentation.html
http://www.xenproject.org/help/documentation.html

92

14 Creating Appliances

Table of Contents
T14.7. The KIWI IMOAE]L ...conieneieeeeeeeeieeeeteeeeeeenesenesessnsensssnessnssssssnsssnsssnssnsssnsssnsssnsssnssnsssnsennns 93

With the traditional model of application delivery, applications such as a word processor or
an e-mail program are installed by a user or an administrator on individual machines. When
deploying the application on multiple machines, this often requires to start the application
installation on each machine. Furthermore, in case of machines solely dedicated to a single
application or a defined set of applications, it is good practice, to adjust the operating system
to optimize resource management and maximize security and performance. When multiple
machines are affected, the steps for adjusting the operating system need to be performed on
each machine, too.

An alternative to the traditional model of application delivery is to provide a so-called “ap-
pliance”. An appliance is the combination of the parts of a general purpose OS needed by a
given application and the application itself, bundled and delivered as one unit. This unit may
be delivered in a variety of formats, for example a ready to run virtual machine or a self-
installing system on an optical media or a flash disk.

The appliance model has a many advantages. Operating system and application installation
are no longer separate steps. The application is installed together with the operating system
and the installation does not require manual intervention. The appliance provider can precon-
figure the application to be ready-to-run directly after installation. Furthermore, the appliance
provider can customize the operating system in terms of performance, resources and security,
so it best fits the given appliance.

14.1. The KIWI Model

KIWTI supports building appliances. When building appliances with KIWI the following pro-
cedure has proven to work reliably. Nevertheless it is a recommendation only and can be
adapted to special needs and environments.

1. Choose an appropriate image description from the KIWI example templates. They are
provided by the packages kiwi-templates, kiwi-desc-vmxboot, kiwi-desc-netboot, and ki-
wi-desc-oemboot. The templates are installed to /usr/share/kiwi/images. Add or adapt
repositories and/or package names, according to the distribution you want to build an
image for.

2. Allow the image to create an in-place git repository to allow tracking non-binary changes.
This is done by adding the following line into the config.sh script:

baseSetupPlainTextGITRepository

93

The KIWI Model

Set up a testing environment. A physical machine supporting to boot from a flash disk
is recommended. All image templates provided by KIWI contain a hybrid iso type setup
which is suitable for such a machine.

Build the live stick appliance by running

kiwi --build template-name

Transfer the image generated in the previous step to the flash disk. Note that all data on
the disk will be erased!

dd if=PATH TO ISO IMAGE
of=FLASH DISK DEVICE bs=4M

Plug the flash disk into your test machine and boot it from the disk containing the ap-
pliance.

After your test system has successfully booted the image, log in to your appliance and
start to tweak the system according to your needs. This includes all actions required to
configure the appliance as needed. Before you start take care for the following:

a. Create an initial package list. This can be done by calling:

rpm -qa | sort > /tmp/deployPackages

b. Check the output of the command git status and add all files matching the following
criteria to /.gitignore:

« the file is not yet part of the repository
+ you do not plan to change the file
« the file will not be included by one of the image description overlay files

When the initial package list exist and the git repository is set up, you can start to con-
figure the system.

Installing Additional Software

Do not add additional software by installing a package being part of a repository
not listed in configuration.xml or by compiling it from the sources. It is very
hard to find out what binary files have been installed that way and it is also not
architecture-safe.

If there is really no other way for the software to become part of the image, you
should address this issue directly in your image description and the config.sh
script, but not after the initial deployment has happened.

As soon as the appliance on your test system works as expected it is ready to enter the
final stage. At this point you have done several changes to the system which are tracked
by the git repository and the package list. To include them into your image description,
use the following process:

a. Check the differences between the currently installed packages and the initial de-
ployment list. This can be done by running:

rpom -qa | sort > /tmp/appliancePackages

94

The KIWI Model

diff -u /tmp/deployPackages /tmp/appliancePackages

Add all packages labeled with (+) to the <packages type="image"> section of
your config.xml file and remove packages labeled with (-).

In case you want to keep packages that have been automatically removed by the
package manager, make sure you address these packages in the config.sh script.
If you have installed packages from repositories which are not yet configured in
config.xml, add them to allow KIWI to install the packages.

b. Check the differences made in the configuration files by running:

git diff >/tmp/appliancePatch

The patch created with this command (/tmp/appliancePatch) should become part
of your image description. To make sure it is applied when preparing the image, add
the following line to config.sh:

patch -p0 < appliancePatch

c. Check for new non binary files that have been added. This can be done by calling:

git status

All files not yet tracked, will be listed under Untracked files. Make sure to add all
files from this list which are not created automatically to your image description. To
do this, clone (copy) these files with regards to the file system structure as overlay
files in your image description root/ directory.

9. All customization work you did within your appliance is now stored in the image descrip-
tion. The image description you created can be re-used for all image types supported by
KIWI.

To make sure the appliance works as expected prepare a new image tree and create an image
from the new tree. You may optionally disable the creation of the git repository within this
new image tree to save disk space. If this appliance is a server, you should keep it, because it
allows you to keep track of changes during the live time of this appliance.

Cross Platform Appliance Building

Building appliances for a specific processor architecture on a different processor archi-
tecture is in generally not possible with KIWI. This limitation is based on the require-
ment that KIWI needs to be able to execute installed software inside the unpacked
image tree. If the software installed inside the unpacked image tree does not run on
the architecture of the build platform then KIWI cannot build the appliance. The only
exception is building 32-bit x86 appliances on a 64-bit x86-64 architecture.

KIWTI's option --target-arch is not intended to support cross-platform appliance
builds. It rather tells the package manager to install packages for the specified archi-
tecture.

95

96

15 System Analysis/Migration

KIWI provides a module which allows you to analyze the running system for creating a report
and an image description representing the current state of the machine. Among others, this
allows you to clone your currently running system into an image. The process has the following
limitations at the moment:

« Works for SUSE systems only (with zypper on board)

+ The process works semi-automatically—depending on the complexity of the system, some
manual postprocessing might be necessary

When calling KIWT's analysis module it tries to find the base version of your operating system
by using the active repositories specified in the zypper database to identify the software pack-
ages currently installed. The result is a list of packages and patterns representing your system.
Files not belonging to any packages, such as user data or configuration files, are provided
as custom data by KIWL. In addition, KIWI offers different data visualization e.g unmanaged
binary data. Along with the software analysis, KIWI also checks for enabled systemd services,
augeas configuration inventory and more. The process will not go beyond the scope of local
file systems.

To create an image of your running system, proceed as follows:

1. Create a report listing all packages and repositories currently installed by running

sudo kiwi --describe workstation
The result will be written to /var/cache/kiwi/describe/workstation

2. Check the result of the previous step for packages that cannot be assigned to a repository.
If you do not need these packages within your image, proceed with the next step. If you
want them to be in the image, either add the repositories containing these packages to
your system (for example with zypper addrepo) and run the previous command again.
Alternatively, tell KIWI which additional repos to check, by using the previous command
together with the --add-repo and --add-repotype options (refer to man 1 kiwi for
more information).

3. Rerun the report generating command. List all packages that are not part of a reposito-
ry or should not be included with the --skip parameter. In case you have previously
used the - -add-repo and - -add- repotype options, use them again with this command:
2015-12-22 - fs: --skip and --nofiles are not mentioned in "man 1 kiwi"

kiwl --describe workstation --nofiles \
--skip "LIST OF PAKAGES" \
--add-repo REPO --add-repotype TYPE

4. Next check the list of files not belonging to any packages in /var/cache/kiwi/de-
scribe/workstation/custom.files. Among others, this list contains user data, con-

97

figuration files, and database files. Make sure to only add files to the image that are
really needed. In case you want to publish the image, double check the list for pass-
word files, configuration files containing plain text passwords, user data, databases and
other sensitive data. All files that should become part of the image description need
to be moved from /var/cache/kiwi/describe/worksation/custom to /var/cache/
kiwi/describe/worksation/root. For additional information also check /var/cache/
kiwi/describe/workstation/custom.files. readme.

Adjust the image description according to your needs by checking the following items:
« Change author and contact in config.xml.

+ Set appropriate name for your image in config.xml.

+ Add or modify the image type (oem by default) set in config.xml if needed.

« If you want to access any remote file system its a good idea to let AutoYaST add them
on first boot of the system.

* Check the network setup in /etc/sysconfig/network. Is this setup still possible in
the cloned environment? Make sure you check for the MAC address of the card first.

Check the size of the image description. It's good practice to keep the image as small as
possible. The size of a migrated image description mainly depends on how many overlay
files exists in the root/ directory. You should make sure to maintain only required overlay
files.

Create an image from the description. By default an OEM image, containing a virtual
disk that can also be deployed to a physical machine, is created. In addition to that,
an ISO image containing an installable version of the image, is also generated. Refer to
Chapter 12, OEM Image / Preload Systems for details.

kiwi --build /var/cache/kiwi/describe/workstation -d /tmp/myResult

Test the image as described in Section 12.2, “Testing the Images”.

98

A KIWI Man Pages

Table of Contents

RIWE ettt ettt e e s et e e e et e e e e bt e e e e e bt e e e e e nnreeeeeas 100
KIWIICONEAZ SN ettt e s s 108
KIWImMAZES. S «eeeeiiiiiiiiieee ettt e e s es 112
KIWIITKIWATC ettt ettt e st e e st e e s e et e e s s e anneeesesnnne 115

The following pages will show you the man page of KIWI and the functions which can be used
within config.sh and index.sh

99

kiwi

kiwi — Creating Operating System Images
Synopsis

kiwi { -1 | --list }

kiwi { -o | --clone } image-path { -d } destination

kiwi { -b | --build } image-path { -d } destination

Basics

KIWI is a complete imaging solution that is based on an image description. Such a description
is represented by a directory which includes at least one config.xml file and may as well
include other files like scripts or configuration data. The kiwi-templates package provides
example descriptions based on a JeOS system. JeOS means Just enough Operating System. KIWI
provides image templates based on that axiom which means a JeOS is a small, text only based
image including a predefined remote source setup to allow installation of missing software
components at a later point in time.

Detailed description of the kiwi image system exists in the system design document in file:///
usr/share/doc/packages/kiwi/kiwi.pdf. KIWI always operates in two steps. The KIWI - -build
option just combines both steps into one to make it easier to start with KIWI. The first step is
the preparation step and if that step was successful, a creation step follows which can create
different image output types. If you have started with an example and want to add you own
changes it might be a good idea to clone of from this example. This can be done by simply
copying the entire image description or you can let KIWI do that for you by using the kiwi
--clone command.

In the preparation step, you prepare a directory including the contents of your new file system
based on one or more software package source(s) The creation step is based on the result of
the preparation step and uses the contents of the new image root tree to create the output
image. If the image type ISO was requested, the output image would be a file with the suffix
.1so representing a live system on CD or DVD. Other than that KIWI can create images for
virtual and para-virtual (Xen) environments as well as for USB stick, PXE network clients and
OEM customized Linux systems.

General Options

[-h | --help]
Display help.

[--version]
Display the KIWI version.

[--check-config path-to-the-configuration-file]
Checks the XML configuration file.

[--nocolor]
Do not use colored output.

100

Image Preparation and Creation

kiwi { -p | --prepare } image-path
{-r | --root } image-root [--cache directory]

kiwi { -c | --create } image-root
{ -d | --destdir } destination [--type image-type]

Image Upgrade

If the image root tree is stored and not removed, it can be used for upgrading the image
according to the changes made in the repositories used for this image. If a distributor provides
an update channel for package updates and an image config.xml includes this update channel
as repository, it is useful to store the image root tree and upgrade the tree according to changes
on the update channel. Given that the root tree exists it's also possible to add or remove
software and recreate the image of the desired type.

kiwi { -u | --upgrade } image- root [--add-package name] [--add-pattern name]

System Analysis

KIWI provides a module which allows you to analyze the running system and create a report
and an image description representing the current state of the machine. Among others this
allows you to clone your currently running system into an image. The system requires the
zypper back-end in order to work properly.

The process will always place it's result into the /tmp/$0ptionValueOf- -describe directory.
The reason for this is because /tmp is always excluded from the analysis and therefore we can
safely place new files there without influencing the process itself. You should have at least
100 MB free space for the cache file and the image description all the rest are just hard links.

As one result a HTML based report file is created which contains important information about
the system. You are free to ignore that information but with the risk that the image from
that description does not represent the same system which is running at the moment. The less
issues left in the report the better is the result. In most cases a manual fine tuning is required.
This includes the repository selection and the unmanaged files along with the configuration
details of your currently running operating system. You should understand the module as a
helper to analyze running linux systems.

kiwi { --describe } name

Image Postprocessing Modes

The KIWI post-processing modes are used for special image deployment tasks, like installing
the image on a USB stick. So to say they are the third step after preparation and creation.
KIWI calls the postprocessing modules automatically according to the specified output image
type and attributes but it's also possible to call them manually.

kiwi --bootvm initrd --bootvm-system systemImage [--bootvm-disksize size]
kiwi --booted initrd

kiwi --bootusb initrd

101

kiwi --installed initrd --installcd-system raw-system-image
kiwi --installstick initrd --installstick-system raw-system-image

kiwi --installpxe initrd --installpxe-system raw-system-image

Image Format Conversion

The KIWI format conversion is useful to perform the creation of another image output format
like vimdk for VMware or ovf the open virtual machine format. Along with the conversion KIWI
also creates the virtual machine configuration according to the format if there is a machine
section specified in the XML description

kiwi --convert systemImage [--format vmdk|ovf|qcow2|vhd]

Helper Tools

The helper tools provide optional functions like creating an encrypted password string for the
users section of the config.xml file as well as signing the image description with an md5sum
hash and adding splash data to the boot image used by the boot loader.

kiwi --createpassword
kiwi --createhash image-path

kiwi { -i | --info } ImagePath {--select repo-patterns|patterns|types|sources|size|
profiles|packages|version }

kiwi --setup-splash initrd
The following list describes the helper tools more detailed

[--createpassword]
Create a crypted password hash and prints it on the console. The user can use the string
as value for the pwd attribute in the XML users section

[--createhash image-path]
Sign your image description with a md5sum. The result is written to a file named
.checksum.md and is checked if KIWI creates an image from this description.

[-i | --info image-path--select selection]

List general information about the image description. So far you can get information about
the available patterns in the configured repositories with repo-patterns, a list of used
patterns for this image with patterns, a list of supported image types with types, a list of
source URLs with sources, an estimation about the install size and the size of the packages
marked as to be deleted with size, alist of profiles with profiles, alist of solved packages
to become installed with packages, and the information about the appliance name and
version with version

[--setup-splash initrd]
Create splash screen from the data inside the initrd and re-create the initrd with the splash
screen attached to the initrd cpio archive. This enables the kernel to load the splash screen
at boot time. If splashy is used only a link to the original initrd will be created

102

Global Options

[--add-profileprofile-name]
Use the specified profile. A profile is a part of the XML image description and therefore
can enhance each section with additional information. For example adding packages.

[--set-repoURL]
Set/Overwrite the repo URL for the first repo listed in the configuration file that does not
have a "fixed" status. The change is temporary and will not be written to the XML file.

[--set-repotypetype]
Set/Overwrite repo type for the first listed repo. The supported repo types depends on the
package manager. Commonly supported are rpm-md, rpm-dir and yast2. The change is
temporary and will not be written to the XML file.

[--set-repoaliasname]
Set/Overwrite alias name for the first listed repo. Alias names are optional free form text.
If not set the source attribute value is used and builds the alias name by replacing each “/”
with a “_”. An alias name should be set if the source argument doesn't really explain what
this repository contains. The change is temporary and will not be written to the XML file.

[--set-repoprionumber]
Set/Overwrite priority for the first listed repo. Works with the smart package manager
only. The Channel priority assigned to all packages available in this channel (0 if not set). If
the exact same package is available in more than one channel, the highest priority is used.

[--add-repo URL, --add-repotype type--add-repoalias name--add-repoprio number]
Add the given repository and type for this run of an image prepare or upgrade process.
Multiple - -add- repo/--add- repotype options are possible. The change will not be writ-
ten to the config.xml file

[--ignore-repos]
Ignore all repositories specified so far, in XML or elsewhere. This option should be used in
conjunction with subsequent calls to - -add- repo to specify repositories at the command
line that override previous specifications.

[--logfile Filename | terminal]
Write to the log file Filename instead of the terminal.

[--gzip-cmd cmd]
Specify an alternate command to run when compressing boot and system images. Com-
mand must accept gzip options.

[--package-manager smart|zypper]
Set the package manager to use for this image. If set it will temporarily overwrite the
value set in the xml description.

[-A| --target-arch 1586|x86 64|armv5tel|ppc]
Set a special target-architecture. This overrides the used architecture for the image-pack-
ages in zypp.conf. When used with smart this option doesn't have any effect.

[--disk-start-sector number]
The start sector value for virtual disk based images. The default is 2048. For newer disks
including SSD this is a reasonable default. In order to use the old style disk layout the
value can be set to 32.

103

[--disk-sector-size number]
Overwrite the default 512 byte sector size value. This will influence the partition align-
ment.

[--disk-alignment number]
Align the start of each partition to the specified value. By default 4096 bytes are used.

[--debug]
Prints a stack trace in case of internal errors

[--verbose 1|2]|3]
Controls the verbosity level for the instsource module

[-y | --yes]
Answer any interactive questions with yes

[--create-instsource path-to-config.xml]
Using this option, it is possible to create a valid installation repository from blank RPM
file trees. The created tree can be used directly for the image creation process afterwards.

[--bundle-build]
This option bundles the build results to be suitable for publishing it in the Build Service.
It allows adding a build-number in combination with the - -bundle-id option as well as
a SHA key to the results. It also removes intermediate build results not relevant for users
if they don't want to rebuild the image.

[--bundle-id build-number]
The build-number/string in combination with - -bundle-build

Image Preparation Options

[-r| --root RootPath]
Set up the physical extend, chroot system below the given root-path path. If no --root
option is given, KIWI will search for the attribute defaultroot in config.xml. If no root
directory is known, a mktemp directory will be created and used as root directory.

[--force-new-root]
Force creation of new root directory. If the directory already exists, it is deleted.

Image Upgrade/Preparation Options

[--cachedirectory]
When specifying a cache directory, KIWI will create a cache each for patterns and packages
and re-use them, if possible, for subsequent root tree preparations of this and/or other
images

[--init-cacheimage description]
Creates a cache from a KIWI image description.

[--recycle-root]
Uses an existing root tree and base the kiwi prepare step on top of it. This is used to speed
things up.

104

[--force-bootstrap]
In combination with recycle-root this option forces to call the bootstrap phase of kiwi,
which is not considered necessary under normal circumstances.

[- -add-packagepackagel
Add the given package name to the list of image packages multiple - -add-package options
are possible. The change will not be written to the XML description.

[--add-patternname]
Add the given pattern name to the list of image packages multiple - -add-pattern options
are possible. The change will not be written to the xml description. Patterns can be handled
by SUSE based repositories only.

[--del-packagepackage]
Removes the given package by adding it the list of packages to become removed. The
change will not be written to the xml description.

Image Creation Options

[-d | --destdir DestinationPath]
Specify destination directory to store the image file(s) If not specified, KIWI will try to find
the attribute defaultdestination which can be specified in the preferences section of
the config.xml file. If it exists its value is used as destination directory. If no destination
information can be found, an error occurs.

[-t]| --type Imagetypel
Specify the output image type to use for this image. Each type is described in a type
section of the preferences section. At least one type needs to be specified in the config.xml
description. By default, the types specifying the primary attribute will be used. If there is
no primary attribute set, the first type section of the preferences section is the primary
type. The types are only evaluated when KIWI runs the --create step. With the option
- -type one can distinguish between the types stored in config.xml

[-s | --strip]
Strip shared objects and executables - only makes sense in combination with - -create

[--prebuiltbootimage Directory]
Search in Directory for pre-built boot images.

[--isocheck]
in case of an iso image the checkmedia program generates a md5sum into the ISO header.
If the --isocheck option is specified a new boot menu entry will be generated which
allows to check this media

[--Tvm]
Use the logical volume manager to control the disk. The partition table will include one
lvm partition and one standard ext2 boot partition. Use of this option makes sense for the
create step only and also only for the image types: vmx, oem, and usb

[--fs-blocksize number]
When calling KIWTI in creation mode this option will set the block size in bytes. For ISO
images with the old style ramdisk setup a block size of 4096 bytes is required

[--fs-journalsize number]
When calling KIWI in creation mode this option will set the journal size in mega bytes for
ext[23] based file systems and in blocks if the Reiser file system is used

105

[--fs-inodesize number]
When calling KIWI in creation mode this option will set the inode size in bytes. This option
has no effect if the Reiser file system is used

[--fs-inoderatio number]
Set the bytes/inode ratio. This option has no effect if the Reiser file system is used

[--fs-max-mount-count number]
When calling kiwi in creation mode this option will set the number of mounts after which
the file system will be checked. Set to 0 to disable checks. This option applies only to
ext[234] file systems.

[--fs-check-interval number]
When calling kiwi in creation mode this option will set the maximal time between two
file system checks. Set to O to disable time-dependent checks. This option applies only to
ext[234] file systems.

[--fat-storage size in MB]
if the syslinux boatload is used this option allows to specify the size of the fat partition.
This is useful if the fat space is not only used for booting the system but also for custom
data. Therefore this option makes sense when building a USB stick image (image type:
usb or oem)

[--partitioner parted|fdasd]
Select the tool to create partition tables. Supported are parted and fdasd (s390). By default
parted is used

[--check-kernel]
Activates check for matching kernels between boot and system image. The kernel check
also tries to fix the boot image if no matching kernel was found.

[--mbrid number]
Specifies a custom mbrid. The number value is treated as decimal number which is inter-
nally translated into a 4byte hex value. The allowed range therefore is from 0x0 to max
Oxffffftff. By default kiwi creates a random value

[--edit-bootconfig script]
Specifies the location of a custom script which is called right before the boot loader is
installed. This allows to modify the boot loader configuration file written by kiwi. The
scripts working directory is the one which represents the image structure including the
boot loader configuration files. Please have in mind that according to the image type,
architecture and boot loader type the files/directory structure and also the name of the
boot loader configuration files might be different.

[--edit-bootinstall script]
Specifies the location of a custom script which is called right after the boot loader is
installed.

[--archive-image]
When calling kiwi - - create this option allows to pack the build result(s) into a tar archive.

[--targetdevicedevice]
Use an alternative block device instead of the loop device. The given location must be a
block device node, not a symlink or other linux device node type.

106

For More Information

More information about KIWI, its files can be found at:

https://opensuse.github.io/kiwi/
KIWI wiki

config.xml
The configuration XML file that contains every aspect for the image creation.

file:///usr/share/doc/packages/kiwi/kiwi.pdf

The system documentation which describes the supported image types in detail.

file:///usr/share/doc/packages/kiwi/schema/kiwi.xsd.html
The KIWI RELAX NG XML Schema documentation.

107

https://opensuse.github.io/kiwi/

kiwi::config.sh
KIWTI::config.sh — Customization File for KIWI image description

Description

The KIWI image description allows to have an optional config. sh bash script in place. It can
be used for changes appropriate for all images to be created from a given unpacked image
(since config.sh runs prior to create step) Basically the script should be designed to take over
control of adding the image operating system configuration. Configuration in that sense means
all tasks which runs once in an os installation process like activating services, creating con-
figuration files, prepare an environment for a firstboot workflow, etc. The config.sh script
is called after the following kiwi built in configuration tasks: User/Groups, copy of overlay
root tree and setup of AutoYaST If config.sh exits with an exit code != 0 the kiwi process
will exit with an error too.

Example A.1. Template for config.sh

#:

Functions...

test -f /.kconfig && . /.kconfig
test -f /.profile & . /.profile

#:

Greeting...

echo "Configure image: [$kiwi iname]..."

#:

Mount system filesystems

baseMount

#:

Call configuration code/functions

baseCleanMount

#:

Exit safely

Common functions

The . kconfig file allows to make use of a common set of functions. Functions specific to SUSE
Linux specific begin with the name suse. Functions applicable to all linux systems starts with
the name base. The following list describes the functions available inside the config. sh script.

[baseCleanMount]
Umount the system filesystems /proc, /dev/pts, and /sys.

108

[baseDisableCtrlAltDel]
Disable the Ctrl-Alt-Del key sequence setting in /etc/inittab

[baseGetPackagesForDeletion]
Return the name(s) of packages which will be deleted

[baseGetProfilesUsed]
Return the name(s) of profiles used to build this image

[baseSetRunlevel {value}]
Set the default run level

[baseSetupBoot]
Set up the linuxrc as init

[baseSetupBusyBox {-f}]
activates busybox if installed for all links from the busybox/busybox. links file—you can
choose custom apps to be forced into busybox with the - f option as first parameter, for
example:

baseSetupBusyBox -f /bin/zcat /bin/vi

[baseSetupInPlaceGITRepository]
Create an in place git repository of the root directory. This process may take some time
and you may expect problems with binary data handling

[baseSetupInPlaceSVNRepository {path_list}]
Create an in place subversion repository for the specified directories. A standard call could
look like this baseSetupInPlaceSVNRepository /etc, /srv, and /var/log

[baseSetupPlainTextGITRepository]
Create an in place git repository of the root directory containing all plain/text files.

[baseSetupUserPermissions]
Search all home directories of all users listed in /etc/passwd and change the ownership
of all files to belong to the correct user and group.

[baseStripAndKeep {list of info-files to keep}]
helper function for strip* functions read stdin lines of files to check for removing params:
files which should be keep

[baseStripDocs {list of docu names to keep}]
remove all documentation, except one given as parameter

[baseStripInfos {list of info-files to keep}]
remove all info files, except one given as parameter

[baseStripLocales {list of locales}]
remove all locales, except one given as parameter

[baseStripMans {list of manpages to keep}]
remove all manual pages, except one given as parameter example: baseStripMans more less

[baseStripRPM]
remove rpms defined in config.xml in the image type = delete section

109

[suseRemovePackagesMarkedForDeletion]
remove rpms defined in config.xml in the image type =delete section. The difference
compared to baseStripRPM is that the suse variant checks if the package is really installed
prior to passing it to rpm to uninstall it. The suse rpm exits with an error exit code while
there are other rpm version which just ignore if an uninstall request was set on a package
which is not installed

[baseStripTools {list of toolpath} {list of tools}]
helper function for suseStripInitrd function params: toolpath, tools

[baseStripUnusedLibs]
remove libraries which are not directly linked against applications in the bin directories

[baseUpdateSysConfig {filename} {variable} {value}]
update sysconfig variable contents

[Debug {message}]
Helper function to print a message if the variable DEBUG is set to 1

[Echo {echo commandline}]
Helper function to print a message to the controlling terminal

[Rm {list of files}]
Helper function to delete files and announce it to log

[Rpm {rpm commandline}]
Helper function to the RPM function and announce it to log

[suseConfig]
Setup keytable language, timezone and hwclock if specified in config.xml and call SuSE-
config afterwards SuSEconfig is only called on systems which still support it

[suselnsertService {servicename}]
This function calls baselnsertService and exists only for compatibility reasons

[suseRemoveService {servicename}]
This function calls baseRemoveService and exists only for compatibility reasons

[baselnsertService {servicename}]
Activate the given service by using the chkconfig or systemctl program. Which init system
is in use is auto detected

[baseRemoveService {servicename}]
Deactivate the given service by using the chkconfig or systemctl program. Which init sys-
tem is in use is auto detected

[baseService {servicename} {on|off}]
Activate/Deactivate a service by using the chkconfig or systemctl program. The function
requires the service name and the value on or off as parameters. Which init system is in
use is auto detected

[suseActivateDefaultServices]
Activates the following sysVInit services to be on by default using the chkconfig program:
boot.rootfsck, boot.cleanup, boot.localfs, boot.localnet, boot.clock, policykitd, dbus, con-
solekit, haldaemon, network, atd, syslog, cron, kbd. And the following for systemd sys-
tems: network, cron

110

[suseSetupProduct]
This function creates the baseproduct link in /etc/products.d pointing to the installed
product

[suseSetupProductInformation]
This function will use zypper to search for the installed product and install all product
specific packages. This function only makes sense if zypper is used as package manager

[suseStripPackager {-a}]
Remove smart or zypper packages and db files Also remove rpm package and db if -a given

Profile environment variables

The .profile environment file contains a specific set of variables which are listed below. Some
of the functions above use the variables.

[$kiwi_compressed]
The value of the compressed attribute set in the type element in config.xml

[$kiwi_delete]
A list of all packages which are part of the packages section with type="delete" in
config.xml

[$kiwi_drivers]
A comma separated list of the driver entries as listed in the drivers section of the
config.xml.

[$kiwi_iname]
The name of the image as listed in config.xml

[$kiwi_iversion]
The image version string major.minor.release

[$kiwi_keytable]
The contents of the keytable setup as done in config.xml

[$kiwi_language]
The contents of the locale setup as done in config.xml

[$kiwi_profiles]
A list of profiles used to build this image

[$kiwi_size]
The predefined size value for this image. This is not the computed size but only the optional
size value of the preferences section in config.xml

[$kiwi_timezone]
The contents of the timezone setup as done in config.xml

[$kiwi_type]
The basic image type. Can be a simply file system image type of ext2, ext3, reiserfs,
squashfs, cpio, or one of the following complex image types: iso, split, usb, vmx, oem,
Xen, or pxe.

111

kiwi::images.sh
KIWI::images.sh — Customization File for KIWI image description

Description

The KIWI image description allows to have an optional images.sh bash script in place. It
can be used for changes appropriate for certain images/image types on case-by-case basis
(since it runs at beginning of create step) Basically the script should be designed to take over
control of handling image type specific tasks. For example if building the oem type requires
some additional package or config it can be handled in images.sh. Please keep in mind there
is only one unpacked root tree the script operates in. This means all changes are permanent
and will not be automatically restored. It is also the script authors tasks to check if changes
done before do not interfere in a negative way if another image type is created from the same
unpacked image root tree If images.sh exits with an exit code != 0 the kiwi process will
exit with an error too.

Example A.2. Template for images.sh

#
Functions...

test -f /.kconfig && . /.kconfig
test -f /.profile & . /.profile

-

Greeting...

echo "Configure image: [$kiwi iname]..."

#
Call configuration code/functions

Common functions

The . kconfig file allows to make use of a common set of functions. Functions specific to SUSE
Linux specific begin with the name suse. Functions applicable to all linux systems starts with
the name base. The following list describes the functions available inside the images . sh script.

[baseCleanMount]
Umount the system file systems /proc, /dev/pts, and /sys.

[baseGetProfilesUsed]
Return the name(s) of profiles used to build this image.

[baseGetPackagesForDeletion]
Return the list of packages setup in the packages type="delete" section of the
config.xml used to build this image.

112

[suseGFXBoot {theme} {loadertype}]
This function requires the gfxboot and at least one bootsplash-theme-* package to be in-
stalled to work correctly. The function creates from this package data a graphics boot
screen for the isolinux and grub boot loaders. Additionally it creates the bootsplash files
for the resolutions 800x600, 1024x768, and 1280x1024

[suseStripKernel]
This function removes all kernel drivers which are not listed in the *drivers sections of
the config.xml file.

[suseStripInitrd]
This function removes a whole bunch of tools binaries and libraries which are not required
to boot a suse system with KIWIL.

[Rm {list of files}]
Helper function to delete files and announce it to log.

[Rpm {rpm commandline}]
Helper function to the rpm function and announce it to log.

[Echo {echo commandline}]
Helper function to print a message to the controlling terminal.

[Debug {message}]
Helper function to print a message if the variable DEBUG is set to 1.

Profile environment variables

The .profile environment file contains a specific set of variables which are listed below. Some
of the functions above use the variables.

[$kiwi_iname]
The name of the image as listed in config.xml

[$kiwi_iversion]
The image version string major.minor.release

[$kiwi_keytable]
The contents of the keytable setup as done in config.xml

[$kiwi_language]
The contents of the locale setup as done in config.xml

[$kiwi_timezone]
The contents of the timezone setup as done in config.xml

[$kiwi_delete]
A list of all packages which are part of the packages section with type="delete" in
config.xml

[$kiwi_profiles]
A list of profiles used to build this image

[$kiwi_drivers]
A comma separated list of the driver entries as listed in the drivers section of the
config.xml.

113

[$kiwi_size]
The predefined size value for this image. This is not the computed size but only the optional
size value of the preferences section in config.xml

[$kiwi_compressed]
The value of the compressed attribute set in the type element in config.xml

[$kiwi_type]
The basic image type. Can be a simply file system image type of ext2, ext3, reiserfs,
squashfs, and cpio or one of the following complex image types: iso split usb vmx oem
Xen pxe

114

kiwi::kiwirc
KIWTI::kiwirc — Resource file for the Kiwi imaging system

Description

The KIWI imaging tool chain supports the use of an optional resource file named .kiwirc
located in the users home directory.

The file is sourced by a Perl process and thus Perl compatible syntax for the supported variable
settings is required.

Example A.3. Template for .kiwi.rc
$BasePath='/usr/share/kiwi';
$Gzip="bzip2"';

$LogServerPort="'4455";
$System="'/usr/share/kiwi/image’;

Supported Resource Settings

KIWI recognizes the BasePath, Gzip, LogServerPort, LuksCipher, and System settings in the
.kiwirc file.

[BasePath]
Path to the location of the KIWI image system components, such as modules, tests, image
descriptions etc.

The default value is /usr/share/kiwi

[Gzip]
Specify the compression utility to be used for various compression tasks during image
generation.

The default value is gzip -9

[LogServerPort]
Specify a port number for log message queuing.

The default value is off

[LuksCipher]
Specify the cipher for the encrypted Luks file system.

[System]
Specify the location of the KIWI system image description.

The default value is the value of BasePath concatenated with /image.

115

116

B Setting Up a Network Boot Server

To be able to deploy PXE bot images created with KIWI, you need to set up a network boot
server providing the services DHCP and atftp.

Procedure B.1. Installing and Configuring atftp
1. Install the packages atftp and kiwi-pxeboot.

2. Edit the file /etc/sysconfig/atftpd. Set or modify the following variables:

ATFTPD_OPTIONS="--daemon --no-multicast"
ATFTPD_DIRECTORY="/srv/tftpboot"

3. Start the atftpd service by running:

systemctl start atftpd

Procedure B.2. Installing and Configuring DHCP

Contrary to the atftp server setup the following instructions can only serve as an example.
Depending on your network structure, the IP addresses, ranges and domain settings need to be
adapted to allow the DHCP server to work within your network. If you already have a DHCP
server running in your network, make sure that the filename and next-server are correctly
set in /etc/dhcpd. conf on this server.

The following steps describe how to set up a new DHCP server instance:
1. Install the package dhcp-server.

2. Create the file /etc/dhcpd. conf and include the following statements. Note that all val-
ues listed below are examples, make sure to replace them with data fitting your network
setup.

option domain-name "example.org";

option domain-name-servers 192.168.100.2;
option broadcast-address 192.168.100.255;
option routers 192.168.100.2;

option subnet-mask 255.255.255.0;
default-lease-time 600;

max-lease-time 7200;

ddns-update-style none; ddns-updates off;
log-facility local7;

subnet 192.168.100.0 netmask 255.255.255.0 {
filename "pxelinux.0";
next-server 192.168.100.2;
range dynamic-bootp 192.168.100.5 192.168.100.20;
}

117

3. Edit the file /etc/sysconfig/dhcpd and setup the network interface the server should
listen on:

DHCPD INTERFACE="eth0"

4. Run the dhcp server by calling:

systemctl start wickedd-dhcp4

118

C GNU Licenses

Table of Contents

C.1. GNU Free Documentation LICEIISEccucieueieniienreereneeeneeueeseeneeeneeensesssesesenesensssnsennses 119

This appendix contains the GNU Free Documentation License version 1.2.

C.1. GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

119

GNU Free Docu-
mentation License

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication

120

GNU Free Docu-
mentation License

that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

121

GNU Free Docu-
mentation License

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M.Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of

122

GNU Free Docu-
mentation License

Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggre-

123

GNU Free Docu-
mentation License

gate" if the copyright resulting from the compilation is not used to limit the legal rights of the
compilation's users beyond what the individual works permit. When the Document is included
in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the

124

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

GNU Free Docu-
mentation License

Free Software Foundation; with no Invariant Sections,

no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES,
with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

125

126

Index

Symbols

** Other systemitems **
br0, 62
dockerd, 61
dropbear, 19, 19
kernel-default, 89
libvirtd, 64
root, 6, 6, 63
sshd, 64
vagrant, 63, 64

A

attributes
alias, 35, 35
arch, 33
blocksize, 31
boot, 14, 25, 26, 26, 26, 37, 37
bootfilesystem, 59
bootinclude, 17, 17, 18, 18, 37, 39
bootkernel, 25
bootloader-theme, 27
bootpartition, 59
bootprofile, 25
bootsplash-theme, 27
bootstrap, 11
compressed, 26
controller, 33, 33, 34, 34
defaultdestination, 27
defaultroot, 28
description, 24
device, 33
displayname, 23
domain, 33
driver, 34, 34
filesystem, 26, 26
flags, 25, 54, 54
format, 26, 58
freespace, 28, 28, 43, 43
fsreadonly, 26
fsreadwrite, 26
group, 34
guestOS, 33
home, 34
HWversion, 33
hybrid, 55
hybrid ="true", 82
hybridpersistent, 55
id, 23, 33, 33, 34, 34, 34, 34

image, 24, 24, 24, 25, 25, 25, 25, 26, 26,

26, 26, 30
imageinclude, 35, 35
installiso, 82
installstick, 82, 82
interface, 34, 34
kernelemdline, 26, 31
keytable, 27
kiwirevision, 23
locale, 27

luks, 44

lvm, 26, 26

mdraid, 27

memory, 33, 33
mode, 34, 62
mountpoint, 43, 43
name, 23, 23, 24, 28, 34, 43, 43
number, 31
onlyRequired, 39
password, 36, 36, 36
path, 35, 36, 36, 37
patternType, 39, 39
plusRecommended, 39
prefer-license, 36
primary, 24

priority, 36

profiles, 24, 24, 24, 24
pwd, 34

ramonly, 56

realname, 34
rpm-check-signatures, 27
rpm-excludedocs, 27
rpm-force, 27

server, 31

shell, 34

showlicense, 27

size, 28, 28, 31, 43, 43
status, 36, 36

target, 31

timezone, 27

type, 18, 18, 23, 23, 25, 35, 35, 38, 39, 111,

112,113
unit, 31, 32
username, 36, 36, 36

B

boot parameters, 19, 19
build process, 9

C

config.xml, 86
container

127

docker, 61 RC_LANG, 27

D F

devices file extensions
/dev/etherd/e0.1, 68 * iso, 5, 5
/dev/hda2, 69, 69 * kiwi, 21
/dev/nb0, 70 ..gce, 5
/dev/nbdO0, 71 .ami, 5
/dev/nbd1l, 71 .box, 63, 63, 64
/dev/ram0, 69 .8z, 70
/dev/raml, 69, 69, 71 .iso, 54, 82, 82, 100
/dev/sda2, 72 .json, 63, 64
/dev/sda3, 72 .ova, 6
/dev/sdbl, 68 .ovf, 6

directories .qcow2, 5
/, 62 .raw, 58, 58, 58, 58, 58, 82, 82
/boot, 54 .raw.install, 82, 83
/etc, 32, 32, 32, 54 .vagrant, 6
/home, 29, 29, 54, 85 vdi, 6
/image, 11 .vhd, 6
/lib/modules/Version/kernel, 35 .vindk, 6
/srv/tftpboot/boot/initrd, 66 .vinx, 59
/srv/tftpboot/image, 66 filesystems
/srv/tftpboot/KIWI, 66 Btrfs, 54
/srv/tftpboot/KIWI/, 77, 77 clicfs, 31
/srv/tftpboot/KIWI/config.default, 66 overlayfs, 54, 54, 56, 68
/tmp, 43, 43, 44, 101 squashfs, 54, 73
/tmp/myISO, 45 tmpfs, 32
/usr/share/kiwi/image/*-JeOS/, 53, 57,
61, 65 H
/usr/share/kiwi/image/*boot, 14 hook scripts, 15
/usr/share/kiwi/images, 93
/usr/share/zoneinfo, 27, 27 I
/var, 54, 54 images
/var/cache/ 1SO, 53
kiwi/describe/worksation/custom, 98 OEM, 81
/Var(llb/tftpboot/boot/, 70 PXE, 65
config/, 22 VMX, 57
kiwi-hooks, 16, 16 XEN, 89
kiwi/, 7

initrd customization, 17

root, 22 Installation, 81
root/, 95, 98 installation
DVD, 81 network, 86
installiso, 82
E installstick, 82
environment variables iso
delete, 38 file name extension, 82

KIWI_ALLOW_HOOK_CMD_HOOKNAME, ISO images, 53
17

KIWI_GROUP, 77 K
KIWI_HOOK_CMD_HOOKNAME, 17 KIWI
PART, 69, 69 architecture restrictions, 39

128

boot parameters, 19, 19

boot partition, 59

boot process, 13

Btrfs, 42

build process, 9

Caches, 41

compressed root, 56

config.xml, 22

container, 63

Container image, 61

create -- requested image types, 12
create -- user defined scripts images.sh, 12
cross-platform, 95

distribution specific code, 20
encryption, 44

hook scripts, 15

hybrid mode, 55

Hybrid stick, 55

image analysis, 97

image description, 21

initrd customization, 17
Installation, 7

Introduction, 5

ISO image, 53

luks, 44

LVM, 42

LVM support, 59

maintenance, 45

model, 93

OEM image, 81

OEM stick, 56

overlay file system, 54

patterns, 38

prepare -- apply archives, 11
prepare -- apply overlay tree, 11
prepare -- create target root directory, 11
prepare -- install packages, 11
prepare -- manage target root tree, 11
prepare -- user defined scripts config.sh, 11
PXE image, 65

RAID, 42

RAM only image, 73

ram only system, 55

release format, 24

split image, 75

split mode, 54

stages, 12

union image, 73

USB, 55

USB sticks, 55

virtual disk formats, 58
VMware, 58

VMX image, 57
Workflow, 9
XEN image, 89
zfs, 42

M
macros
%arch, 36
manpages
kiwi, 100
kiwi::config.sh, 108
kiwi::images.sh, 112
kiwi::kiwire, 115

N
network boot, 65
network installation, 86

0
OEM images, 81

P

postHWdetect.sh, 83
postImageDump.sh, 83
preHWdetect.sh, 83
prelmageDump.sh, 83
PXE images, 65

R
raw
file name extension, 82
S
server
dhcp, 118
services
atftpd, 117
insserv, 22
U

union image
local-local, 74
local-ram, 74
remote-local, 74
remote-ram, 74
remote-remote, 75
USB Stick, 81

\Y%

vagrant
box, 63
vagrant image

129

vagrant image, 63
virtual disk formats, 58
VMware, 58
VMX images, 57

X
XEN image, 89

130

	openSUSE-KIWI Image System
	Table of Contents
	Part I. Concepts and Basics
	Chapter 1. Introduction
	1.1. What is KIWI?
	1.2. What does KIWI do?
	1.3. How to use KIWI?

	Chapter 2. Installation
	2.1. Installing KIWI Packages
	2.1.1. Installing the Latest Version Available

	2.2. Running KIWI from a Source Checkout

	Chapter 3. Basic Workflow
	3.1. Building Images
	3.1.1. The Prepare Step
	3.1.2. The Create Step

	3.2. Customizing the Boot Process
	3.2.1. Boot Image Hook-Scripts
	3.2.1.1. Script Types
	3.2.1.2. Including Hook Scripts into the Boot Image
	3.2.1.3. Post Commands

	3.2.2. FAQ: Boot Image Customization
	3.2.3. Boot Parameters

	3.3. Distribution-Specific Code

	Chapter 4. KIWI Image Description
	4.1. The config.xml File
	4.1.1. image Element
	4.1.2. description Element
	4.1.3. profiles Element
	4.1.4. preferences Element
	4.1.5. users Element
	4.1.6. drivers Element
	4.1.7. repository Element
	4.1.8. packages Element
	4.1.8.1. Using Patterns
	4.1.8.2. Architecture Restrictions
	4.1.8.3. Packages to Become Included Into the Boot Image
	4.1.8.4. Data not Available as Packages to Become Included

	Chapter 5. Advanced Configuration
	5.1. Image Caches
	5.2. KIWI RAID Support
	5.3. KIWI Custom Partitions
	5.3.1. Custom Partitioning via LVM
	5.3.2. Custom Partitioning via Btrfs

	5.4. KIWI Encryption Support

	Chapter 6. Maintaining Appliance Images
	6.1. Image Maintenance: Updating Software Packages
	6.2. Image Maintenance: Modifying the Configuration

	Part II. Usecases
	Chapter 7. ISO Image / Live System
	7.1. Building Live CD/DVD Images
	7.1.1. Split mode
	7.1.2. Hybrid mode

	7.2. Building Live Images for Removable USB Devices
	7.2.1. Hybrid ISO Image
	7.2.2. In RAM ISO Image
	7.2.3. OEM Virtual Disk Image
	7.2.3.1. OEM compressed / Read-only removable USB Media

	Chapter 8. VMX Image / Virtual Disks
	8.1. Building VMX Images
	8.2. VMware support
	8.3. LVM Support
	8.4. Extra Boot Partition

	Chapter 9. Docker images
	9.1. Building Docker Images
	9.2. Image Configuration Details

	Chapter 10. Vagrant boxes
	10.1. Building Vagrant Boxes

	Chapter 11. PXE Image / Thin Clients
	11.1. Building PXE Images
	11.2. PXE Configuration Files
	11.3. The PXE Client Configuration File Syntax
	11.3.1. Use a Different Download Protocol
	11.3.2. RAM Only Image
	11.3.3. Union Image
	11.3.4. Split Image
	11.3.5. Mounting the Root File System from a Remote Server

	11.4. Hardware Grouping
	11.4.1. The Group Definition File
	11.4.2. The Group Configuration File
	11.4.2.1. Hardware-Specific Configuration Files
	11.4.2.1.1. The Hardware Mapping Elements
	11.4.2.1.2. The Hardware Mapping Configuration File

	11.4.2.2. A Complete Example

	Chapter 12. OEM Image / Preload Systems
	12.1. Building an OEM System and an Installation Image
	12.2. Testing the Images
	12.3. Installation Image Flavors
	12.4. Customizing the OEM Images
	12.4.1. Customizing the OEM Install Process
	12.4.2. OEM Customizing Parameters
	12.4.3. Partition Based Installation

	12.5. Network Based Installation

	Chapter 13. Xen Para- and Full virtual Images
	13.1. Building a Dom0 Image
	13.2. Testing the Dom0 Image
	13.3. Building a Paravirtualized Xen Guest Image
	13.4. Building a Fully Virtualized Xen Guest
	13.5. Using the Guest Images

	Chapter 14. Creating Appliances
	14.1. The KIWI Model

	Chapter 15. System Analysis/Migration

	Appendix A. KIWI Man Pages
	kiwi
	kiwi::config.sh
	kiwi::images.sh
	kiwi::kiwirc

	Appendix B. Setting Up a Network Boot Server
	Appendix C. GNU Licenses
	C.1. GNU Free Documentation License

	Index

