KIWI NG Documentation
Release 9.20.6

Marcus Schafer

Nov 05, 2020

CONTENTS

1 Quick Start 2
2 Installation 4
3 Overview 7
4 Concept and Workflow 11
5 Working with Images 46
6 Building Images 74
7 Command Line 110
8 Contributing 122
9 Image Description XML Schema 135
10 Python API 136
11 The Appliance Concept 300
12 Use Cases 301
13 Contact 302
Python Module Index 303

Index 306

KIWI NG Documentation, Release 9.20.6

Note: KIWI NG vs. KIWI Legacy

This documentation covers KIWI Next Generation (KIWI NG) 9.20.6- the command line utility
to build Linux system appliances. KIWI NG is stable and all new features, bugfixes, and
improvements will be developed here. Versions older or equal to v7.x.x are out of maintenance
and do not get any updates or bugfixes. If you still need this version, refer to the documentation
for KIWI Legacy

CONTENTS 1

https://doc.opensuse.org/projects/kiwi/doc

CHAPTER
ONE

QUICK START

Note: Abstract

This document describes how to start working with KIWI NG, an OS appliance builder. This
description applies for version 9.20.6.

1.1 Before you start

1. Install KIWI NG first, either via your distributions’ package manager (see /nstallation)
or via:

$ pip install kiwi

2. Clone the repository containing example appliances (see Example Appliance Descrip-
tions):

$ git clone https://github.com/OSInside/kiwi-descriptions

1.2 Choose a First Image

Take a look which images are available in the example appliances repository and select one
that matches your desired image as close as possible. Or just use the one given in the examples
below.

KIWI NG Documentation, Release 9.20.6

1.3 Build your First Image

Your first image will be a simple system disk image which can run in any full virtualization
system like QEMU. Invoke the following KIWI NG command in order to build it:

$ sudo kiwi-ng —--type vmx system build \

——description kiwi-descriptions/suse/x86_64/suse-leap-15.1-Je0S
=\

-—target-dir /tmp/myimage

The resulting image will be placed into the folder /tmp/myimage with the suffix . raw.

If you don’t wish to create a openSUSE Leap 15.1 image, substitute the folder following the
——description option with another folder that contains the image description which you
selected.

1.4 Run your Image

Running an image actually means booting the operating system. In order to do that attach the
disk image to a virtual system. In this example we use QEMU and boot it as follows:

$ gemu -boot c \

—drive file=LimeJeOS-Leap-15.1.x86_64-1.15.1.raw, format=raw,
wif=virtio \

-m 4096

1.5 Tweak and Customize your Image

Now that you have successfully built and started your first image, you can start tweaking it to
match your needs.

Find the documentation of the appliance description files in the following sections.

1.3. Build your First Image 3

CHAPTER
TWO

INSTALLATION

Note: This document describes how to install KIWI NG. Apart from the preferred method to
install KIWI NG via rpm, it is also available on pypi and can be installed via pip.

2.1 Installation from OBS

The most up to date packages of KIWI NG can be found on the Open Build Service in the
Virtualization: Appliances: Builder project.

To install KIWI NG, follow these steps:

1. Open the URL https://download.opensuse.org/repositories/Virtualization:/Appliances:
/Builder in your browser.

2. Right-click on the link of your preferred operating system and copy the URL. In Firefox
it is the menu Copy link address.

3. Insert the copied URL from the last step into your shell. The DIST placeholder con-
tains the respective distribution. Use zypper addrepo to add it to the list of your
repositories:

$ sudo zypper addrepo http://download.opensuse.org/repositories/
—Virtualization:/Appliances:/Builder/<DIST> appliance-builder

If your distribution is not using zypper, please use your package manager’s appropriate
command instead. For dnf that is:

$ sudo dnf config-manager —--add-repo https://download.opensuse.
—org/repositories/Virtualization:/Appliances:/Builder/<DIST>/
—Virtualization:Appliances:Builder.repo

4. Add the repositories’ signing-key to your package manager’s database. For rpm run:

$ sudo rpm —--import https://build.opensuse.org/projects/
—~Virtualization:Appliances:Builder/public_key

And verify that you got the correct key:

https://pypi.org/project/kiwi/
https://download.opensuse.org/repositories/Virtualization:/Appliances:/Builder
https://download.opensuse.org/repositories/Virtualization:/Appliances:/Builder
https://download.opensuse.org/repositories/Virtualization:/Appliances:/Builder

KIWI NG Documentation, Release 9.20.6

$ rpm —-gi gpg-pubkey-74cbe823-% | gpg2

gpg: WARNING: no command supplied. Trying to guess what you,

omean ...

pub dsal024 2009-05-04 [SC] [expires: 2020-10-09]
F7E82012C74FD0OB85F5334DC994B195474CBE823

uid Virtualization:Appliances OBS Project

—<Virtualization:Appliances@build.opensuse.org>

5. Install KIWI NG:

$ sudo zypper in python3-kiwi

2.2 Installation from your distribution’s repositories

Note: There are many packages that contain the name KIWI NG in their name, some of these
are even python packages. Please double check the packages’ description whether it is actually
the KIWI NG Appliance builder before installing it.

Some Linux distributions ship KIWI NG in their official repositories. These include openSUSE
Tumbleweed, openSUSE Leap, and Fedora since version 28. Note, these packages tend to not
be as up to date as the packages from OBS, so some features described here might not exist yet.

To install KIWI NG on openSUSE, run the following command:

$ sudo zypper install python3-kiwi

On Fedora, use the following command instead:

$ sudo dnf install kiwi-cli

2.3 Installation from PyPI

KIWI NG can be obtained from the Python Package Index (PyPi) via Python’s package man-
ager pip:

$ pip install kiwi

2.2. Installation from your distribution’s repositories 5

KIWI NG Documentation, Release 9.20.6

2.4 Example Appliance Descriptions

There is a GitHub project hosting example appliance descriptions to be used with the next
generation KIWI NG. Users who need an example to start with should clone the project as
follows:

$ git clone https://github.com/0SInside/kiwi-descriptions

6 Chapter 2. Installation

CHAPTER
THREE

OVERVIEW

Note: Abstract

This document provides a conceptual overview about the steps of creating an image with KIWI
NG. It also explains the terminology regarding the concept and process when building system
images with KIWI NG 9.20.6.

3.1 Basic Workflow

Note: Abstract

Installation of a Linux system generally occurs by booting the target system from an installa-
tion source such as an installation CD/DVD, a live CD/DVD, or a network boot environment
(PXE). The installation process is often driven by an installer that interacts with the user to
collect information about the installation. This information generally includes the software to
be installed, the timezone, system user data, and other information. Once all the information
is collected, the installer installs the software onto the target system using packages from the
software sources (repositories) available. After the installation is complete the system usually
reboots and enters a configuration procedure upon start-up. The configuration may be fully
automatic or it may include user interaction.

This description applies for version 9.20.6.

A system image (usually called “image”), is a complete installation of a Linux system within
a file. The image represents an operational system and, optionally, contains the “final” config-
uration.

The behavior of the image upon deployment varies depending on the image type and the image
configuration since KIWI NG allows you to completely customize the initial start-up behavior
of the image. Among others, this includes images that:

* can be deployed inside an existing virtual environment without requiring configuration
at start-up.

* automatically configure themselves in a known target environment.

KIWI NG Documentation, Release 9.20.6

* prompt the user for an interactive system configuration.

The image creation process with KIWI NG is automated and does not require any user inter-
action. The information required for the image creation process is provided by the primary
configuration file named config.xml. This file is validated against the schema documented
in Schema Documentation section. In addition, the image can optionally be customized us-
ing the config.sh and images. sh scripts and by using an overlay tree (directory) called
root. See Components of an Image Description section for further details.

Note: Previous Knowledge

This documentation assumes that you are familiar with the general concepts of Linux, including
the boot process, and distribution concepts such as package management.

3.1.1 Components of an Image Description

A KIWI NG image description can composed by several parts. The main part is the KIWI NG
description file itself (named config.xml or an arbitrary name plus the = . kiwi extension).
The configuration XML is the only required component, others are optional.

These are the optional components of an image description:
1. config. sh shell script

Is the configuration shell script that runs and the end of the prepare step if present. It can
be used to fine tune the unpacked image.

Note that the script is directly invoked by the operating system if its executable bit is set.
Otherwise it is called by bash instead.

2. images. sh shell script

Is the configuration shell script that runs at the beginning of the create step. So it is
expected to be used to handle image type specific tasks. It is called in a similar fashion
as config.sh

3. Overlay tree directory

The overlay tree is a folder (called root) or a tarball file (called root .tar.gz) that
contains files and directories that will be copied to the target image build tree during the
prepare step. It is executed after all the packages included in the config. xml file have
been installed. Any already present file is overwritten.

4. CD root user data

For live ISO images and install ISO images an optional cdroot archive is sup-
ported. This is a tar archive matching the name config-cdroot.tar(.
compression_postfix]. If present it will be unpacked as user data on the ISO im-
age. This is mostly useful to add e.g license files or user documentation on the CD/DVD
which can be read directly without booting from the media.

5. Archives included in the config.xml file.

8 Chapter 3. Overview

KIWI NG Documentation, Release 9.20.6

The archives that are included in the <packages> using the <archiwve> subsection:

<packages type="image">
<archive name="custom—-archive.tgz"/>
</packages>

3.2 Conceptual Overview

A system image (usually called “image”), is a complete installation of a Linux system within a
file. The image represents an operation system and, optionally, contains the “final” configura-
tion.

KIWI NG creates images in a two step process:

1. The first step, the prepare operation, generates a so-called unpacked image tree (direc-
tory) using the information provided in the image description.

2. The second step, the create operation, creates the packed image or image in the specified
format based on the unpacked image and the information provided in the configuration
file.

The image creation process with KIWI NG is automated and does not require any user in-
teraction. The information required for the image creation process is provided by the image
description.

3.3 Terminology

Appliance An appliance is a ready to use image of an operating system including a pre-
configured application for a specific use case. The appliance is provided as an image
file and needs to be deployed to, or activated in the target system or service.

Image The result of a KIWI NG build process.

Image Description Specification to define an appliance. The image description is a collection
of human readable files in a directory. At least one XML file config.xml or .kiwi
is required. In addition there may be as well other files like scripts or configuration data.
These can be used to customize certain parts either of the KIWI NG build process or of
the initial start-up behavior of the image.

Overlay Files A directory structure with files and subdirectories stored as part of the Image
Description. This directory structure is packaged as a file root.tar.gz or stored
inside a directory named root. The content of the directory structure is copied on
top of the the existing file system (overlayed) of the appliance root. This also includes
permissions and attributes as a supplement.

KIWING An OS appliance builder.

3.2. Conceptual Overview 9

KIWI NG Documentation, Release 9.20.6

Virtualization Technology Software simulated computer hardware. A virtual machine acts
like a real computer, but is separated from the physical hardware. Within this documen-
tation the QEMU virtualization system is used. Another popular alternative is Virtualbox.

3.4 System Requirements

To use and run KIWI NG, you need:

* A recent Linux distribution, see Supported Distributions for details. Alternatively a
Linux distribution which supports the docker container system, where KIWI NG can
be run inside a container, see: Building in a Self-Contained Environment

Enough free disk space to build and store the image. We recommend a minimum of
15GB.

Python version 3.4 or higher

Git (package git) to clone a repository.

Any virtualization technology to start the image. We recommend QEMU.

10 Chapter 3. Overview

CHAPTER
FOUR

CONCEPT AND WORKFLOW

Note: Abstract

The following sections describe the concept and general workflow of building appliances with
KIWI NG 9.20.6.

4.1 The Image Description

The image description is a XML file that defines properties of the appliance that will be build
by KIWI NG, for example:

* image type (e.g. QEMU disk image, PXE bootable image, Vagrant box, etc.)
* partition layout

* packages to be installed on the system

* users to be added

The following sections will walk you through the major elements and attributes of the RELAX
NG schema'. A complete description of the schema can be found in /mage Description XML
Schema.

We will follow the standard nomenclature when addressing components of the XML file:
* An element is a XML “tag”: <example/>, which we address by the name example.

* Elements can have attributes which take values: <example attrl="vall"
attr2=val2a"/>.

¢ Elements can have children:

<element>
<child/>
</element>

' RELAX NG is a so-called schema language: it describes the structure of a XML document.

11

https://en.wikipedia.org/wiki/RELAX_NG

KIWI NG Documentation, Release 9.20.6

¢ Some elements have a content: <element_with_ content>CONTENT, while others
are emtpy-element tags: <emtpy_element/>.

4.2 The image Element

The image description consists of the root element image and its children, for example:

<?xml version="1.0" encoding="utf-8"?>

<image schemaversion="7.1" name="LimeJeOS-Leap-15.1">
<!-- all settings belong here —-—>
</image>

The image element requires the following two attributes (as shown in the above example):
* name: A name for this image that must not contain spaces or /.

* schemaversion: The used version of the RNG schema. KIWI NG will automatically
convert your image description from an older schema version to the most recent one (it
will perform this only internally and won’t modify your config.xml). If in doubt, use
the latest schema version.

The name attribute will be used to create the bootloader entry, however it can be inconvenient
to use as it must be POSIX-safe. You can therefore provide an alternative name that will be
displayed in the bootloader via the attribute displayName, which doesn’t have the same
strict rules as name (it can contain spaces and slashes):

<?xml version="1.0" encoding="utf-8"?>

<image schemaversion="7.1" name="LimeJeOS—-Leap—-15.1" displayName=
—~"LimeJeOS-Leap—-15.1">

<!-—- all setting belong here ——>
</image>

4.3 The description Element

The description element, contains some high level information about the image:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">

<description type="system">
<author>Jane Doe</author>
<contact>janelmyemaildomain.xyz</contact>
<specification>

LimeJeOS-Leap-15.1, a small image

</specification>
<license>GPLv3</license>

</description>

(continues on next page)

12 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

<!-— snip ——>
</image>

The description element must always contain a t ype attribute. This attribute accepts the
values system or boot. The value boot is used by the KIWI NG developers and is not
relevant for the end user, thus t ype should be always set to system.

description allows the following optional children:
* author: The name of the author of this image.

* contact: Some means how to contact the author of the image (e.g. an email address,
an IM nickname and network, etc.)

* specification: A detailed description of this image, e.g. its use case.

* license: If applicable, you can specify a license for the image.

4.4 The preferences Element

The mandatory preferences element contains the definition of the various enabled image
types (so-called build types). Each of these build types can be supplied with attributes specific
to that image type, which we described in the section Build Types.

4.4.1 Build Types

A build type defines the type of an appliance that is produced by KIWI NG, for instance, a live
ISO image or a virtual machine disk.

For example, a live ISO image is specified as follows:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">
<preferences>
<type image="iso" primary="true" flags="overlay"
hybridpersistent_filesystem="ext4" hybridpersistent="true"/>
<!-—- additional preferences —-—>
</preferences>
<!-—- additional image settings ——>
</image>

A build type is defined via a single t ype element whose only required attribute is image,
that defines which image type is created. All other attributes are optional and can be used to
customize an image further. In the above example we created an ISO image, with the an ext4
filesystem?.

2 A hybrid persistent filesystem contains a copy-on-write file to keep data persistent over a reboot.

4.4. The preferences Element 13

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#license
https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

It is possible to provide multiple t ype elements with different image attributes inside the
preferences section. The following XML snippet can be used to create a live image, an OEM
installation image, and a virtual machine disk of the same appliance:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">

<preferences>
<!-— Live ISO ——>
<type image="iso" primary="true" flags="overlay"

~hybridpersistent_filesystem="ext4" hybridpersistent="true"/>

<!-- Virtual machine -->
<type image="vmx" filesystem="ext4" bootloader="grub2" _

wkernelcmdline="splash" firmware="efi"/>

<!-— OEM installation image ——>
<type image="oem" filesystem="ext4" initrd_system="dracut"

—~installiso="true" bootloader="grub2" kernelcmdline="splash"

—firmware="efi">

<oemconfig>
<oem-systemsize>2048</oem-systemsize>
<oem-swap>true</oem-swap>
<oem—-device-filter>/dev/ram</oem—-device-filter>
<oem-multipath-scan>false</oem-multipath-scan>

</oemconfig>
<machine memory="512" guestOS="suse" HWversion="4"/>
</type>
<!-— additional preferences ——>
</preferences>
<!-- additional image settings —->

</image>

Note the additional attribute primary in the Live ISO image build type. KIWI NG will by
default build the image which primary attribute is set to t rue.

KIWI NG supports the following values for the image attribute (further attributes of the t ype
element are documented inside the referenced sections):

* iso: alive ISO image, see Build an ISO Hybrid Live Image
* vmx: build a virtual machine image, see: Build a Virtual Disk Image

* oem: results in an expandable image that can be deployed via a bootable installation
medium, e.g. a USB drive or a CD. See Build an OEM Expandable Disk Image

* pxe: creates an image that can be booted via PXE (network boot), see Build a PXE Root
File System Image

* docker, oci: container images, see Build a Docker Container Image

* btrfs, ext2, ext3, ext4, xfs: KIWI NG will convert the image into a mountable
filesystem of the specified type.

* squashfs, clicfs: creates the image as a filesystem that can be used in live systems

14

Chapter 4. Concept and Workflow

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

* tbz, cpio: the unpacked source tree will be compressed into a XZ or CPIO archive.

The type element furthermore supports the following subelements (as shown above,
oemconfigis asubelement of <type image="oem" ...>):

* containerconfig: contains settings specific for the creation of container images,
see Build a Docker Container Image

* oemconfig: configurations relevant for building OEM images, see: Build an OEM
Expandable Disk Image

* pxedeploy: settings for PXE booting, see Build a PXE Root File System Image

* vagrantconfig: instructs KIWI NG to build a Vagrant box instead of a standard
virtual machine image, see /mage Description for Vagrant

* systemdisk: used to define LVM or Btrfs (sub)volumens, see Custom Disk Volumes

* machine: for configurations of the virtual machines, see Customizing the Virtual Ma-
chine

* size: for adjusting the size of the final image, see Modifying the Size of the Image.

Common attributes of the type element

The t ype element supports a plethora of optional attributes, some of these are only relevant for
certain build types and will be covered in the appropriate place. Certain attributes are however
useful for nearly all build types and will be covered here:

* bootloader: Specifies the bootloader used for booting the image. At the mo-
ment grub2, zipl and grub2_s390x_emu (a combination of zipl and a userspace
GRUB2) are supported. The special custom entry allows to skip the bootloader con-
figuration and installation and leaves this up to the user which can be done by using the
editbootinstall and editbootconfig custom scripts.

* boottimeout: Specifies the boot timeout in seconds prior to launching the default
boot option. By default the timeout is set to 10 seconds. It makes sense to set this value
to 0 for images intended to be started non-interactively (e.g. virtual machines).

* bootpartition: Boolean parameter notifying KIWI NG whether an extra boot parti-
tion should be used or not (the default depends on the current layout). This will override
KIWI NG’s default layout.

* btrfs_quota_groups: Boolean parameter to activate filesystem quotas if the
filesystem is bt r fs. By default quotas are inactive.

* btrfs_root_1is_snapshot: Boolean parameter that tells KIWI NG to install the
system into a btrfs snapshot. The snapshot layout is compatible with snapper. By default
snapshots are turned off.

* btrfs_root_is_readonly_snapshot: Boolean parameter notifying KIWI NG
that the btrfs root filesystem snapshot has to made read-only. if this option is set to true,
the root filesystem snapshot it will be turned into read-only mode, once all data has been

4.4.

The preferences Element 15

https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Cpio
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

placed to it. The option is only effective if bt rfs_root_is_snapshot is also set to
true. By default the root filesystem snapshot is writable.

compressed: Specifies whether the image output file should be compressed or not.
This option is only used for filesystem only images or for the pxe or cpio types.

editbootconfig: Specifies the path to a script which is called right before the boot-
loader is installed. The script runs relative to the directory which contains the image
structure.

editbootinstall: Specifies the path to a script which is called right after the boot-
loader is installed. The script runs relative to the directory which contains the image
structure.

filesystem: The root filesystem, the following file systems are supported: btrfs,
ext2,ext3,ext4, squashfs and xfs.

firmware Specifies the boot firmware of the appliance, supported options are: bios,
ec2,efi,uefi, ofwand opal. This attribute is used to differentiate the image ac-
cording to the firmware which boots up the system. It mostly impacts the disk layout and
the partition table type. By default bios is used on x86, ofw on PowerPC and efi on
ARM.

force_mbr: Boolean parameter to force the usage of a MBR partition table even if the
system would default to GPT. This is occasionally required on ARM systems that use a
EFI partition layout but which must not be stored in a GPT. Note that forcing a MBR
partition table incurs limitations with respect to the number of available partitions and
their sizes.

fsmountoptions: Specifies the filesystem mount options which are passed via the
—o flag to mount and are included in /etc/fstab.

fscreateoptions: Specifies the filesystem options used to create the filesystem. In
KIWI NG the filesystem utility to create a filesystem is called without any custom op-
tions. The default options are filesystem specific and are provided along with the package
that provides the filesystem utility. For the Linux ext [234] filesystem, the default op-
tions can be found in the /etc/mke2fs.conf file. Other filesystems provides this
differently and documents information about options and their defaults in the respective
manual page, e.g man mke2fs. With the fscreateoptions attribute it’s possible
to directly influence how the filesystem will be created. The options provided as a string
are passed to the command that creates the filesystem without any further validation by
KIWI NG. For example, to turn off the journal on creation of an ext4 filesystem the
following option would be required:

<type fscreateoptions="-0 “has_journal"/>

kernelcmdline: Additional kernel parameters passed to the kernel by the bootloader.

luks: Supplying a value will trigger the encryption of the partitions using the LUKS
extension and using the provided string as the password. Note that the password must be
entered when booting the appliance!

primary: Boolean option, KIWI NG will by default build the image which primary

16

Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

attribute is set to true.

target_blocksize: Specifies the image blocksize in bytes which has to match the
logical blocksize of the target storage device. By default 512 Bytes is used, which works
on many disks. You can obtain the blocksize from the SSZ column in the output of the
following command:

blockdev —--report S$DEVICE

4.4.2 Common Elements

Now that we have covered the t ype element, we shall return to the remaining child-elements
of preferences:

version: A version number of this image. We recommend to use the following format:
Major.Minor.Release, however other versioning schemes are possible, e.g. one can use
the version of the underlying operating system.

packagemanager: Specify the package manager that will be used to download and in-
stall the packages for your appliance. Currently the following package managers are sup-
ported: apt—get, zypper and dnf. Note that the package manager must be installed
on the system calling KIWI NG, it is not sufficient to install it inside the appliance.

locale: Specify the locale that the resulting appliance will use.

timezone: Override the default timezone of the image to a more suitable value, e.g.
the timezone in which the image’s users reside.

rpm-check-signatures: Boolean value that defines whether the signatures of the
downloaded RPM packages will be verified before installation. Note that when building
appliances for a different distribution you will have to either import the other distribu-
tion’s signing-key or set this to false (RPM will otherwise fail to verify the package
signatures, as it does will not trust the signature key of other distributions or even other
versions of the same distribution).

rpm-excludedocs: Boolean value that instructs RPM whether to install documenta-
tion with packages or not. Please bear in mind that enabling this can have quite a negative
impact on user-experience and should thus be used with care.

bootloader—-theme and bootsplash—-theme: themes for the bootloader and the
bootsplash-screen. These themes have to be either built-in to the bootloader or installed
via the packages section.

An example excerpt from a image description using these child-elements of preferences,
results in the following image description:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">

<!-— snip ——>

<preferences>
<version>15.0</version>
<packagemanager>zypper</packagemanager>

(continues on next page)

4.4.

The preferences Element 17

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/locale.html#module-locale

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

<locale>en_US</locale>

<keytable>us</keytable>

<timezone>Europe/Berlin</timezone>

<rpm-excludedocs>true</rpm—excludedocs>

<rpm—check-signatures>false</rpm—-check-signatures>

<bootsplash-theme>openSUSE</bootsplash—-theme>

<bootloader-theme>openSUSE</bootloader—-theme>

<type image="vmx" filesystem="ext4" format="qcow2"_
—boottimeout="0" bootloader="grub2">

</preferences>
<!-— snip ——>
</image>

4.5 Image Profiles

In the previous section we have covered build types, that are represented in the image descrip-
tion as the t ype element. We have also shown how it is possible to include multiple build
types in the same appliance. Unfortunately that approach has one significant limitation: one
can only include multiple build types with different settings for the attribute image.

In certain cases this is undesirable, for instance when building multiple very similar virtual
machine disks. Then one would have to duplicate the whole config.xml for each virtual
machine. KIWI NG supports profiles to work around this issue.

A profile is a namespace for additional settings that can be applied by KIWI NG on top of the
default settings (or other profiles), thereby allowing to build multiple appliances with the same
build type but with different configurations.

In the following example, we create two virtual machine images: one for QEMU (using the
gcow?2 format) and one for VMWare (using the vmdk format).

<image schemaversion="7.1" name="LimeJeOS-Leap-15.1">
<!-- snip -—>
<profiles>
<profile name="QEMU" description="virtual machine for QEMU"/
o>
<profile name="VMWare" description="virtual machine for_
VMWare"/>
</profiles>
<preferences>
<version>15.0</version>
<packagemanager>zypper</packagemanager>
</preferences>
<preferences profiles="QEMU">
<type image="vmx" format="gcow2" filesystem="ext4"
—bootloader="grub2">
</preferences>

(continues on next page)

18 Chapter 4. Concept and Workflow

https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

<preferences profiles="VMWare">
<type image="vmx" format="vmdk" filesystem="ext4"
—bootloader="grub2">

</preferences>
<!-— snip ——>
</image>

Each profile is declared via the element profi1e, which itself must be a child of profiles
and must contain the name and description attributes. The description is only
present for documentation purposes, name on the other hand is used to instruct KIWI NG
which profile to build via the command line. Additionally, one can provide the boolean at-
tribute import, which defines whether this profile should be used by default when KIWI NG
is invoked via the command line.

A profile inherits the default settings which do not belong to any profile. It applies only to ele-
ments that contain the profile in their profiles attribute. The attribute profiles expects
a comma separated list of profiles for which the settings of this element apply. The attribute is
present in the following elements only:

* preferences
e drivers

* repository and packages (see Defining Repositories and Adding or Removing
Packages)

® users

Profiles can furthermore inherit settings from another profile via the requires sub-element:

<profiles>
<profile name="VM" description="virtual machine"/>
<profile name="QEMU" description="virtual machine for QEMU">
<requires profile="VM"/>
</profile>
</profiles>

The profile QEMU would inherit the settings from VM in the above example.

We cover the usage of profiles when invoking KIWI NG and when building in the Open Build
Service in Building Images with Profiles.

4.5. Image Profiles 19

https://docs.python.org/3/library/profile.html#module-profile

KIWI NG Documentation, Release 9.20.6

4.6 Adding Users

User accounts can be added or modified via the users element, which supports a list of mul-
tiple user child elements:

<image schemaversion="7.1" name="LimeJeOS-Leap-15.1">
<users>
<user
password="this_is_soo_insecure"
home="/home/me" name="me"
groups="users" pwdformat="plain"

/>
<user
password="3$1$wYJUgpM5S$RXMMeASDc035eX . NbYWF10"
home="/root" name="root" groups="root"
/>
</users>

</image>

Each user element represents a specific user that is added or modified. The following at-
tributes are mandatory:

* name: the UNIX username
* home: the path to the user’s home directory
Additionally, the following optional attributes can be specified:

* groups: A comma separated list of UNIX groups. The first element of the list is used
as the user’s primary group. The remaining elements are appended to the user’s supple-
mentary groups. When no groups are assigned then the system’s default primary group
will be used.

¢ 1d: The numeric user id of this account.

* pwdformat: The format in which password is provided, either plain or
encrypted (the latter is the default).

* password: The password for this user account. It can be provided either in cleartext
form (pwdformat="plain")orin crypt’ed form (pwdformat="encrypted").
Plain passwords are discouraged, as everyone with access to the image description would
know the password. It is recommended to generate a hash of your password, e.g. using
the mkpasswd tool (available in most Linux distributions via the whois package):

$ mkpasswd -m sha-512 -S $(date +%N) -s <<< INSERT_YOUR_
< PASSWORD_HERE

The users element furthermore accepts a list of profiles (see /mage Profiles) to which it
applies via the profiles attribute, as shown in the following example:

<image schemaversion="7.1" name="LimeJeOS-Leap-15.1">
<profiles>

(continues on next page)

20 Chapter 4. Concept and Workflow

https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/crypt.html#module-crypt

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

<profile name="VM" description="standard virtual machine"/>
<profile name="shared VM" description="virtual machine_
—shared by everyone"/>
</profiles>
<!-— snip ——>
<users>
<user
password="$1SwYJUgpM5SRXMMeASDc035eX . NbYWF10"
home="/root" name="root" groups="root"
/>
</users>
<users profiles="VM">
<user
password="5$1SblablablSFRTFJZxMPfM6LA1g0EZ5h1"
home="/home/devel" name="devel"

/>
</users>
<users profiles="shared_ VM">
<user
password="super_secrd4t" pwdformat="plain"
home="/share/devel" name="devel" groups="users,devel"
/>
</users>
</image>

Here the settings for the root user are shared among all appliances. The configuration of the
devel user on the other hand depends on the profile.

4.7 Defining Repositories and Adding or Removing
Packages

A crucial part of each appliance is the package and repository selection. KIWI NG al-
lows the end user to completely customize the selection of repositories and packages via the
repository and packages elements.

4.7.1 Adding repositories

KIWI NG installs packages into your appliance from the repositories defined in the image
description. Therefore at least one repository must be defined, as KIWI NG will otherwise not
be able to fetch any packages.

A repository is added to the description via the repository element, which is a child of the
top-level image element:

4.7. Defining Repositories and Adding or Removing Packages 21

KIWI NG Documentation, Release 9.20.6

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">

<!-—- snip —-—>
<repository type="rpm-md" alias="kiwi" priority="1">

<source path="obs://Virtualization:Appliances:Builder/

—openSUSE_Leap_15.1"/>

</repository>
<repository type="rpm-md" alias="0S" imageinclude="true">

<source path="obs://openSUSE:Leap:15.1/standard"/>

</repository>

</image>

In the above snippet we defined two repositories:

1. The repository belonging to the KIWI NG project:

obs://Virtualization:Appliances:Builder/openSUSE_Leap_15.1 at the Open Build
Service (OBS)

. The RPM repository belonging to the OS project: obs://openSUSE:Leap:15.1/standard,

at the Open Build Service (OBS). The translated http URL will also be included in the
final appliance.

The repository element accepts one source child element, which contains the URL to
the repository in an appropriate format and the following optional attributes:

* type: repository type, accepts one of the following values: apt-deb, apt-rpm,

deb-dir, mirrors, rpm-dir, rpm-md. For ordinary RPM repositories use
rpm-md, for ordinary APT repositories apt —deb.

imageinclude: Specify whether this repository should be added to the resulting im-
age, defaults to false.

imageonly: A repository with imageonly="true" will not be available during
image build, but only in the resulting appliance. Defaults to false.

priority: An integer priority for all packages in this repository. If the same package
is available in more than one repository, then the one with the highest priority is used.

alias: Name to be used for this repository, it will appear as the repository’s name in
the image, which is visible via zypper repos or dnf repolist. KIWI NG will
construct an alias from the path in the source child element (replacing each / with a
_), if no value is given.

repository_gpgcheck: Specify whether or not this specific repository is config-
ured to to run repository signature validation. If not set, the package manager’s default is
used.

package_gpgcheck: Boolean value that specifies whether each package’s GPG sig-
nature will be verified. If omitted, the package manager’s default will be used

components: Distribution components used for deb repositories, defaults to main.
distribution: Distribution name information, used for deb repositories.

profiles: List of profiles to which this repository applies.

22

Chapter 4. Concept and Workflow

https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

Supported repository paths

The actual location of a repository is specified in the source child element of repository
via its only attribute path. KIWI NG supports the following paths types:

* http://URL or https://URL or ftp://URL: a URL to the repository available
via HTTP(s) or FTP.

* obs://$PROJECT/SREPOSITORY: evaluates to the repository SREPOSITORY of
the project SPROJECT available on the Open Build Service (OBS). By default KIWING
will look for projects on build.opensuse.org, but this can be overridden using the runtime
configuration file (see The Runtime Configuration File). Note that it is not possible to
add repositories using the obs: // path from different OBS instances (use direct URLs
to the . repo file instead in this case).

* obsrepositories:/: special path only available for builds using the Open Build
Service. The repositories configured for the OBS project in which the KIWI NG image
resides will be available inside the appliance. This allows you to configure the reposito-
ries of your image from OBS itself and not having to modify the image description.

e dir:///path/to/directory or file:///path/to/file: an absolute path
to a local directory or file available on the host building the appliance.

* iso:///path/to/image. iso: the specified ISO image will be mounted during the
build of the KIWI NG image and a repository will be created pointing to the mounted
ISO.

4.7.2 Adding and removing packages

Now that we have defined the repositories, we can define which packages should be installed
on the image. This is achieved via the packages element which includes the packages that
should be installed, ignore or removed via individual package child elements:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">
<packages type="bootstrap">
<package name="udev"/>
<package name="filesystem"/>
<package name="openSUSE-release"/>

<!-- additional packages installed before the chroot 1is_
—Ccreated ——>
</packages>

<packages type="image">
<package name="patterns-openSUSE-base"/>
<!-- additional packages to be installed into the chroot -->
</packages>
</image>

The packages element provides a collection of different child elements that instruct KIWI
NG when and how to perform package installation or removal. Each packages element acts
as a group, whose behavior can be configured via the following attributes:

4.7. Defining Repositories and Adding or Removing Packages 23

https://build.opensuse.org

KIWI NG Documentation, Release 9.20.6

* type: either bootstrap, image, delete, uninstall or one of the following
build types: docker, iso, oem, pxe, vimx, oci.

Packages for type="bootstrap" are pre-installed to populate the images’ root file
system before chrooting into it.

Packages in type="1image" are installed immediately after the initial chroot into the
new root file system.

Packages in type="delete" and type="uninstall" are removed from the im-
age, for details see Uninstall System Packages.

And packages which belong to a build type are only installed when that specific build
type is currently processed by KIWI NG.

* profiles: alistof profiles to which this package selection applies (see /mage Profiles).

* patternType: selection type for patterns, supported values are: onlyRequired,
plusRecommended, see: The product and namedCollection element.

We will describe the different child elements of packages in the following sections.
The package element

The package element represents a single package to be installed (or removed), whose name
is specified via the mandatory name attribute:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">
<!-— snip ——>
<packages type="bootstrap">
<package name="udev"/>
</packages>
</image>

which adds the package udev to the list of packages to be added to the initial filesystem.
Note, that the value that you pass via the name attribute is passed directly to the used package
manager. Thus, if the package manager supports other means how packages can be specified,
you may pass them in this context too. For example, RPM based package managers (like dnf
or zypper) can install packages via their Provides:. This can be used to add a package
that provides a certain capability (e.g. Provides: /usr/bin/my-binary) via:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">
<!-— snip ——>
<packages type="bootstrap">
<package name="/usr/bin/my-binary"/>
</packages>
</image>

Whether this works depends on the package manager and on the environment that is being used.
In the Open Build Service, certain Provides either are not visible or cannot be properly ex-
tracted from the KIWI NG description. Therefore, relying on Provides is not recommended.

24 Chapter 4. Concept and Workflow

https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

Packages can also be included only on specific architectures via the arch attribute. KIWI NG
compares the arch attributes value with the output of uname -m.

<image schemaversion="7.1" name="LimeJeOS-Leap-15.1">
<!-— snip ——>
<packages type="image">
<package name="grub2"/>
<package name="grub2-x86_64-efi" arch="x86_64"/>
<package name="shim" arch="x86_64"/>
</packages>
</image>

which results in grub2-x86_64-efi and shim being only installed on 64 Bit images, but
GRUB2 also on 32 Bit images.

The archive element

It is sometimes necessary to include additional packages into the image which are not available
in the package manager’s native format. KIWI NG supports the inclusion of ordinary archives
via the archive element, whose name attribute specifies the filename of the archive (KIWI
NG looks for the archive in the image description folder).

<packages type="image">
<archive name="custom-programl.tgz"/>
<archive name="custom-program2.tar"/>
</packages>

KIWI NG will extract the archive into the root directory of the image using GNU tar, thus only
archives supported by it can be included. When multiple archive elements are specified then
they will be applied in a top to bottom order. If a file is already present in the image, then the
file from the archive will overwrite it (same as with the image overlay).

Uninstall System Packages

KIWI NG supports two different methods how packages can be removed from the appliance:

1. Packages present as a child element of <packages type="uninstall"> will be
gracefully uninstalled by the package manager alongside with dependent packages and
orphaned dependencies.

2. Packages present as a child element of <packages type="delete"> will be re-
moved by RPM/DPKG without any dependency check, thus potentially breaking depen-
dencies and compromising the underlying package database.

Both types of removals take place after config. sh is run in the prepare step (see also User
Defined Scripts).

4.7. Defining Repositories and Adding or Removing Packages 25

https://www.gnu.org/software/tar/

KIWI NG Documentation, Release 9.20.6

Warning: An uninstall packages request deletes:
* the listed packages,
* the packages dependent on the listed ones, and
* any orphaned dependency of the listed packages.

Use this feature with caution as it can easily cause the removal of sensitive tools leading to
failures in later build stages.

Removing packages via type="uninstall" can be used to completely remove a build time
tool (e.g. a compiler) without having to specify a all dependencies of that tool (as one would
have when using t ype="delete"). Consider the following example where we wish to com-
pile a custom program in config. sh. We ship its source code via an archive element and
add the build tools (ninja, meson and clang) to <packages type="image"> and
<packages type="uninstall">:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">
<!-— snip ——>
<packages type="image">
<package name="ca-certificates"/>
<package name="coreutils"/>
<package name="ninja"/>
<package name="clang"/>
<package name="meson"/>
<archive name="foo_app_sources.tar.gz"/>

</packages>
<!-- These packages will be uninstalled after running config.sh_
>

<packages type="uninstall">
<package name="ninja"/>
<package name="meson"/>
<package name="clang"/>
</packages>
</image>

The tools meson, clang and ninja are then available during the prepare step and can thus
be used in config. sh (for further details, see User Defined Scripts), for example to build
foo_app:

pushd /opt/src/foo_app

mkdir build

export CC=clang

meson build

cd build && ninja && ninja install

popd

The <packages type="uninstall"> element will make sure that the final appliance
will no longer contain our tools required to build foo_app, thus making our image smaller.

26 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

There are also other use cases for type="uninstall", especially for specialized appli-
ances. For containers one can often remove the package shadow (it is required to setup new
user accounts) or any left over partitioning tools (parted or £disk). All networking tools
can be safely uninstalled in images for embedded devices without a network connection.

The product and namedCollection element

KIWI NG supports the inclusion of openSUSE products or of namedCollections (patterns in
SUSE based distributions or groups for RedHat based distributions). These can be added via
the product and namedCollection child elements, which both take the mandatory name
attribute and the optional arch attribute.

product and namedCollection can be utilized to shorten the list of packages that need to
be added to the image description tremendously. A named pattern, specified with the named-
Collection element is a representation of a predefined list of packages. Specifying a pattern
will install all packages listed in the named pattern. Support for patterns is distribution specific
and available in SLES, openSUSE, CentOS, RHEL and Fedora. The optional patternType
attribute on the packages element allows you to control the installation of dependent packages.
You may assign one of the following values to the patternType attribute:

* onlyRequired: Incorporates only patterns and packages that the specified patterns
and packages require. This is a “hard dependency” only resolution.

* plusRecommended: Incorporates patterns and packages that are required and recom-
mended by the specified patterns and packages.

The ignore element

Packages can be explicitly marked to be ignored for installation inside a packages collec-
tion. This useful to exclude certain packages from being installed when using patterns with
patternType="plusRecommended" as shown in the following example:

<image schemaversion="7.1" name="LimeJeOS-Leap—-15.1">
<packages type="image" patternType="plusRecommended">
<namedCollection name="network-server"/>
<package name="grub2"/>
<package name="kernel"/>
<ignore name="ejabberd"/>
<ignore name="puppet-server"/>
</packages>
</image>

Packages can be marked as ignored during the installation by adding a ignore child element
with the mandatory name attribute set to the package’s name. Optionally one can also specify
the architecture via the arch similarly to The package element.

4.7. Defining Repositories and Adding or Removing Packages 27

KIWI NG Documentation, Release 9.20.6

Warning: Adding ignore elements as children of a <packages type="delete">
ora <packages type="uninstall"> element has no effect! The packages will still
get deleted.

4.8 User Defined Scripts

Note: Abstract

This chapter describes the usage of the user defined scripts config.sh and image. sh,
which can be used to further customize an image in ways that are not possible via the image
description alone.

KIWI NG supports up to two user defined scripts that it runs in the change root environment
(chroot) containing your new appliance:

1. config.sh runs the end of the prepare step if present. It can be used to fine tune the
unpacked image.

2. images.sh is executed at the beginning of the image creation process. It is run on
the top level of the target root tree. The script is usually used to remove files that are
not needed in the final image. For example, if an appliance is being built for a specific
hardware, unnecessary kernel drivers can be removed using this script.

KIWI NG will execute both scripts via the operating system if their executable bit is set (in that
case a shebang is mandatory) otherwise they will be invoked via the BASH.

4.8.1 Image Customization via the config. sh Shell Script

The KIWI NG image description allows to have an config. sh script in place. It can be used
for changes appropriate for all images to be created from a given unpacked image (config.
sh runs prior to the create step). The script should add operating system configuration files
which would be otherwise added by a user driven installer, like the activation of services,
creation of configuration files, preparation of an environment for a firstboot workflow, etc.

The config. sh script is called at the end of the prepare step (after users have been set and
the overlay tree directory has been applied). If config. sh exits with a non-zero exit code
then KIWI NG will report the failure and abort the image creation.

Find a common template for config. sh script below:

test -f /.kconfig && . /.kconfig
test —-f /.profile && . /.profile

(continues on next page)

28 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

Configuration Tips

1. Stateless systemd UUIDs:

Machine ID files are created and set (/etc/machine-id, /var/lib/dbus/
machine-id) during the image package installation when systemd and/or dbus
are installed. Those UUIDs are intended to be unique and set only once in each
deployment. KIWI NG follows the systemd recommendations and wipes any /
etc/machine-id content, leaving it as an empty file. Note, this only applies to
images based on a dracut initrd, it does not apply for container images.

In case this setting is also required for a non dracut based image, the same result
can achieved by removing /etc/machine-idin config. sh.

Note: Avoid interactive boot

It is important to remark that the file /et c/machine-1id is set to an empty file
instead of deleting it. systemd may trigger systemd—-firstboot service if
this file is not present, which leads to an interactive firstboot where the user is asked
to provide some data.

Note: Avoid inconsistent /var/lib/dbus/machine-id

Note that /etc/machine-id and /var/lib/dbus/machine-id must
contain the same unique ID. On modern systems /var/lib/dbus/
machine-id is already a symlink to /etc/machine-id. However on older
systems those might be two different files. This is the case for SLE-12 based im-
ages. If you are targeting these older operating systems, it is recommended to add
the symlink creation into config. sh:

————

Make machine-id consistent with dbus

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

if [-e /var/lib/dbus/machine-id]; then
rm /var/lib/dbus/machine-id

(continues on next page)

4.8. User Defined Scripts 29

https://www.freedesktop.org/software/systemd/man/machine-id.html

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

fi
ln -s /etc/machine-id /var/lib/dbus/machine-id

4.8.2 Image Customization via the images. sh Shell Script

The KIWI NG image description allows to have an optional images . sh bash script in place.
It can be used for changes appropriate for certain images/image types on a case-by-case basis
(since it runs at beginning of create step).

Warning: Modifications of the unpacked root tree

Keep in mind that there is only one unpacked root tree the script operates in. This means
that all changes are permanent and will not be automatically restored!

The script should be designed to take over control of handling image type specific tasks. For
example, if building the OEM type requires some additional packages or configurations then
that can be handled in images . sh. Additionally, the script authors tasks is to check if changes
performed beforehand do not interfere in a negative way if another image type is created from
the same unpacked image root tree.

If images. sh exits with a non-zero exit code, then KIWI NG will report an error and abort
the image creation.

See below a common template for images . sh script:

test -f /.kconfig && . /.kconfig
test —-f /.profile && . /.profile

30 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

4.8.3 Functions and Variables Provided by KIWI NG

KIWI NG creates the .kconfig and .profile files to be sourced by the shell scripts
config.sh and images.sh. .kconfig contains various helper functions which can be
used to simplify the image configuration and . profile contains environment variables which
get populated from the settings provided in the image description.

Provided Functions

The .kconfig file provides a common set of functions. Functions specific to SUSE Linux
begin with the name suse, functions applicable to all Linux distributions start with the name
base.

The following list describes all functions provided by .kconfig:

baseCleanMount Unmount the filesystems /proc, /dev/pts, /sys and /proc/
sys/fs/binfmt_misc.

baseGetPackagesForDeletion Return the name(s) of the packages marked for dele-
tion in the image description.

baseGetProfilesUsed Return the name(s) of profiles used to build this image.
baseSetRunlevel {value} Setthe default run level.

baseSetupUserPermissions Setthe ownership of all home directories and their content
to the correct users and groups listed in /etc/passwd.

baseStripAndKeep {list of info-files to keep} Helper function for the
baseStripx* functions, reads the list of files to check from stdin for removing params:
files which should be kept

baseStripDocs {list of docu names to keep} Remove all documentation
files, except for the ones given as the parameter.

baseStripInfos {list of info-files to keep} Remove all info files, except
for the one given as the parameter.

baseStripLocales {list of locales} Remove all locales, except for the ones
given as the parameter.

baseStripTranslations {list of translations} Remove all translations,
except for the ones given as the parameter.

baseStripMans {list of manpages to keep} Remove all manual pages, except
for the ones given as the parameter.

Example:

baseStripMans more less

suseImportBuildKey Add the SUSE build keys to the RPM database.

baseStripUnusedLibs Remove libraries which are not directly linked against applica-
tions in the bin directories.

4.8. User Defined Scripts 31

KIWI NG Documentation, Release 9.20.6

baseUpdateSysConfig {filename} {variable} {value} Update the contents
of a sysconfig variable

suseConfig This function is deprecated and is a NOP.

baseSystemdServiceInstalled {service} Prints the path of the first found sys-
temd unit or mount with name passed as the first parameter.

baseSysVServiceInstalled {service} Prints the name ${service} if a SysV
init service with that name is found, otherwise it prints nothing.

baseSystemdCall {service_name} {args} Calls systemctl S${args}
${service_name} if a systemd unit, a systemd mount or a SysV init service with the
S{service_name} exist.

baseInsertService {servicename} Activate the given service via systemctl.
baseRemoveService {servicename} Deactivate the given service via systemctl.

baseService {servicename} {on|off} Activate or deactivate a service via
systemctl. The function requires the service name and the value on or of f as pa-
rameters.

Example to enable the sshd service on boot:

baseService sshd on

suseInsertService {servicename} Calls baselnsertService and exists only for
compatibility reasons.

suseRemoveService {servicename} Calls baseRemoveService and exists only for
compatibility reasons.

suseService {servicename} {on|off} CallsbaseService and exists only for com-
patibility reasons.

suseActivateDefaultServices Activates the network and cron services to run at
boot.

suseSetupProduct Creates the /etc/products.d/baseproduct link pointing to
the product referenced by either /etc/SuSE-brand or /etc/os—-release or the
latest prod file available in /etc/products.d

suseSetupProductInformation Uses zypper to search for the installed product and
installs all product specific packages. This function fails when zypper is not the appli-
ances package manager.

Debug {message} Helper function to print the supplied message if the variable DEBUG
is set to 1.

Echo {echo commandline} Helper function to print a message to the controlling termi-
nal.

Rm {list of files} Helper function to delete files and log the deletion.

Rpm {rpm commandline} Helper function for calling rpm: forwards all commandline
arguments to rpm and logs the call.

32 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

Functions for Custom non-dracut Based Boot

KIWI NG also provides the following functions (mostly for compatibility reasons) which can
be used to customize the boot process when using the custom boot option (see Customizing the
Boot Process):

baseStripInitrd Removes various tools binaries and libraries which are not required to
boot a SUSE system with KIWI NG. This function is not required when using the dracut
initrd system and is kept for compatibility reasons.

baseStripFirmware Check all kernel modules if they require a firmware and strip out all
firmware files which are not referenced by a kernel module

baseStripModules Search for updated modules and remove the old version which might
be provided by the standard kernel

baseStripKernel Strips the kernel:

1. create the vmlinux.gz and vmlinuz files which are used as a fallback for the
kernel extraction

2. handle <strip type="delete"> requests. Because this information is
generic not only files of the kernel are affected but also other data which are un-
wanted get deleted here

3. only keep kernel modules matching the <drivers> patterns from the kiwi boot
image description

4. lookup kernel module dependencies and bring back modules which were removed
but still required by other modules that were kept in the system

5. search for duplicate kernel modules due to kernel module updates and keep only
the latest version

6. search for kernel firmware files and keep only those for which a kernel driver is still
present in the system

suseStripKernel Removes all kernel drivers which are not listed in the drivers sections
of config.xml.

baseStripTools {list of toolpath} {list of tools} Helper function for
suseStripInitrd function parameters: toolpath, tools.

Profile Environment Variables
The . profile environment file is created by KIWI NG and contains a specific set of variables
which are listed below.

$kiwi_compressed The value of the compressed attribute set in the t ype element in
config.xml.

Skiwi_delete A list of all packages which are children of the packages element with
type="delete" in config.xml.

4.8. User Defined Scripts 33

https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

Skiwi_drivers A comma separated list of the driver entries as listed in the drivers
section of the config.xml.

Skiwi_iname The name of the image as listed in config.xml.
Skiwi_iversion The image version as a string.

$kiwi_keytable The contents of the keytable setup as done in config.xml.
$kiwi_language The contents of the locale setup as done in config.xml.
Skiwi_profiles A comma separated list of profiles used to build this image.
Skiwi_timezone The contents of the timezone setup as done in config.xml.

$kiwi_type The image type as extracted from the t ype element in config.xml.

4.9 The Runtime Configuration File

KIWI NG supports an additional configuration file for runtime specific settings that do not be-
long into the image description but which are persistent and would be unsuitable for command
line parameters.

The runtime configuration file must adhere to the YAML syntax. KIWI NG searches for the
runtime configuration file in the following locations:

1. ~/.config/kiwi/config.yml
2. /etc/kiwi.yml

A default runtime config file in /etc/kiwi.yml is provided with the python3-kiwi package.
The file contains all settings as comments including a short description of each setting.

4.10 Customizing the Boot Process

Most Linux systems use a special boot image to control the system boot process after the
system firmware, BIOS or UEFI, hands control of the hardware to the operating system. This
boot image is called the initrd. The Linux kernel loads the initrd, a compressed cpio
initial RAM disk, into the RAM and executes init or, if present, linuxrc.

Depending on the image type, KIWI NG creates the boot image automatically during the
create step. It uses a tool called dracut to create this initrd. Dracut generated initrd
archives can be extended by custom modules to add functionality which is not natively pro-
vided by dracut itself. In the scope of KIWI NG the following dracut modules are used:

kiwi—-dump Serves as an image installer. It provides the required implementation to install a
KIWI NG image on a selectable target. This module is required if one of the attributes
installiso, installstick or installpxe is set to true in the image type
definition

kiwi-dump-reboot Serves to boot the system into the installed image after installation is
completed.

34 Chapter 4. Concept and Workflow

https://docs.python.org/3/library/functions.html#type
https://yaml.org/

KIWI NG Documentation, Release 9.20.6

kiwi-1live Boots up a KIWI NG live image. This module is required if the i so image type
is selected

kiwi-overlay Allows to boot disk images configured with the attribute overlayroot
set to true. Such a disk has its root partition compressed and readonly and boots up
using overlayfs for the root filesystem using an extra partition on the same disk for per-
sistent data.

kiwi-repart Resizes an OEM disk image after installation onto the target disk to meet the
size constraints configured in the oemconfig section of the image description. The
module takes over the tasks to repartition the disk, resizing of RAID, LVM, LUKS and
other layers and resizing of the system filesystems.

kiwi-1ib Provides functions of general use and serves as a library usable by other dracut
modules. As the name implies, its main purpose is to function as library for the above
mentioned kiwi dracut modules.

Note: Using Custom Boot Image Support

Apart from the standard dracut based creation of the boot image, KIWI NG supports the use
of custom boot images for the image types oem and pxe. The use of a custom boot image is
activated by setting the following attribute in the image description:

<type ... initrd_system="kiwi"/>

Along with this setting it is now mandatory to provide a reference to a boot image description
in the boot attribute like in the following example:

<type ... boot="netboot/suse-leapl5.1"/>

Such boot descriptions for the OEM and PXE types are currently still provided by the KIWI
NG packages but will be moved into its own repository and package soon.

The custom boot image descriptions allows a user to completely customize what and how the
initrd behaves by its own implementation. This concept is mostly used in PXE environments
which are usually highly customized and requires a specific boot and deployment workflow.

4.10.1 Boot Image Hook-Scripts

The dracut initrd system uses sy stemd to implement a predefined workflow of services which
are documented in the bootup man page at:
http://man7.org/linux/man-pages/man7/dracut.bootup.7.html

To hook in a custom boot script into this workflow it’s required to provide a dracut module
which is picked up by dracut at the time KIWI NG calls it. The module files can be either
provided as a package or as part of the overlay directory in your image description

The following example demonstrates how to include a custom hook script right before the
system rootfs gets mounted.

4.10. Customizing the Boot Process 35

http://man7.org/linux/man-pages/man7/dracut.bootup.7.html

KIWI NG Documentation, Release 9.20.6

1. Create a subdirectory for the dracut module:

$ mkdir -p root/usr/lib/dracut/modules.d/90my-module

2. Register the dracut module in a configuration file:

$ vi root/etc/dracut.conf.d/90-my-module.conf

add_dracutmodules+=" my-module "

3. Create the hook script:

$ touch root/usr/lib/dracut/modules.d/90my-module/my—-script.sh

4. Create a module setup file in root/usr/lib/dracut/modules.d/
90my-module/module-setup.sh with the following content:

#!/bin/bash

called by dracut
check () {
check module integrity

called by dracut
depends () {
return list of modules depending on this one

called by dracut

installkernel () {
load required kernel modules when needed
instmods _kernel module_ list

called by dracut
install () {
declare moddir=S${moddir
inst_multiple _tools_my_module_script_needs_

inst_hook pre-mount 30 "S{moddir}/my-script.sh"

That’s it! At the time KIWI NG calls dracut the 90my—-module will be taken into account
and is installed into the generated initrd. At boot time systemd calls the scripts as part of the
dracut-pre-mount.service.

The dracut system offers a lot more possibilities to customize the initrd than shown in the
example above. For more information, visit the dracut project page.

36 Chapter 4. Concept and Workflow

http://people.redhat.com/harald/dracut.html

KIWI NG Documentation, Release 9.20.6

4.10.2 Boot Image Parameters

A dracut generated initrd in a KIWI NG image build process includes one or more of the
KIWI NG provided dracut modules. The following list documents the available kernel boot
parameters for this modules:

rd.

rd.

rd.

rd.

rd.

rd.

rd.

rd.

rd.

rd.

kiwi.debug Activates the debug log file for the KIWI NG part of the boot process at
/run/initramfs/log/boot.kiwi.

kiwi.install.pxe Tells an OEM installation image to lookup the system image on
a remote location specified in rd.kiwi.install.image.

kiwi.install.image=URI Specifies the remote location of the system image in a
PXE based OEM installation

kiwi.install.pass.bootparam Tells an OEM installation image to pass an ad-
ditional boot parameters to the kernel used to boot the installed image. This can be used
e.g. to pass on first boot configuration for a PXE image. Note, that options starting with
rd.kiwi are not passed on to avoid side effects.

kiwi.oem.maxdisk=size [KMGT] Configures the maximum disk size an unat-
tended OEM installation should consider for image deployment. Unattended OEM de-
ployments default to deploying on /dev/sda (more exactly, the first device not filtered
out by oem-device-filter). With RAID controllers, it can happen that your buch
of big JBOD disks is for example /dev/sda to /dev/sdi and the 480G RAID1 con-
figured for OS deployment is /dev/sdj. With rd.kiwi.oem.maxdisk=500G the
deployment will land on that RAID disk.

live.overlay.persistent Tells alive ISO image to prepare a persistent write par-
tition.

live.overlay.cowfs Tells alive ISO image which filesystem should be used to store
data on the persistent write partition.

live.cowfile.mbsize Tells alive ISO image the size of the COW file in MB. When
using tools like 1ive—grub-stick the live ISO will be copied as a file on the target
device and a GRUB loopback setup is created there to boot the live system from file. In
such a case the persistent write setup, which usually creates an extra write partition on the
target, will fail in almost all cases because the target has no free and unpartitioned space
available. Because of that a cow file(live_system.cow) instead of a partition is created.
The cow file will be created in the same directory the live iso image file was read from
by grub and takes the configured size or the default size of S00MB.

live.dir Tells alive ISO image the directory which contains the live OS root directory.
Defaults to LiveOS.

live.squashimg Tells a live ISO image the name of the squashfs image file which
holds the OS root. Defaults to squashfs. img.

4.10. Customizing the Boot Process 37

KIWI NG Documentation, Release 9.20.6

Boot Debugging

If the boot process encounters a fatal error, the default behavior is to stop the boot process
without any possibility to interact with the system. Prevent this behavior by activating dracut’s
builtin debug mode in combination with the kiwi debug mode as follows:

rd.debug rd.kiwi.debug

This should be set at the Kernel command line. With those parameters activated, the system
will enter a limited shell environment in case of a fatal error during boot. The shell contains a
basic set of commands and allows for a closer look to:

less /run/initramfs/log/boot.kiwi

4.11 Legacy KIWI vs. KIWI Next Generation (KIWI NG)

Note: Abstract

Users currently have the choice for the kiwi legacy version or this next generation kiwi. This
document describes the maintenance state of the legacy kiwi version and under which circum-
stances the use of the legacy kiwi version is required.

There is still the former KIWI Legacy version and we decided to rewrite it.

The reasons to rewrite software from scratch could be very different and should be explained in
order to let users understand why it makes sense. We are receiving feedback and defect reports
from a variety of groups with different use cases and requirements. It became more and more
difficult to handle those requests in good quality and without regressions. At some point we
asked ourselves:

Is KIWI Legacy really well prepared for future
challenges?

The conclusion was that the former version has some major weaknesses which has to be ad-
dressed prior to continue with future development. The following issues are most relevant:

* Not based on a modern programming language

* Major design flaws but hardly any unit tests. The risk for regressions on refactoring is
high

* No arch specific build integration tests
* Lots of legacy code for old distributions
In order to address all of these the questions came up:

How to modernize the project without producing
regressions?

38 Chapter 4. Concept and Workflow

https://github.com/OSInside/kiwi-legacy

KIWI NG Documentation, Release 9.20.6

How to change/drop features without making anybody
unhappy?

As there i1s no good way to achieve this in the former code base the decision was made to start
a rewrite of KIWI Legacy with a maintained and stable version in the background.

Users will be able to use both versions in parallel. In addition, KIWI NG will be fully com-
patible with the current format of the appliance description. This means, users can build an
appliance from the same appliance description with KIWI Legacy and KIWI NG, if the distri-
bution and all configured features are supported by the used version.

This provides an opportunity for users to test KIWI NG with their appliance descriptions with-
out risk. If it builds and works as expected, I recommend to switch to the KIWI NG. If not,
please open an issue on https://github.com/OSInside/kiwi.

The KIWI Legacy version will be further developed in maintenance mode. There won’t be any
new features added in that code base though. Packages will be available at the known place:
KIWI Legacy packages

4.11.1 When Do | need to use KIWI Legacy

* If you are building images using one of the features of the dropped features list below.

e If you are building images for an older distribution compared to the list on the main page,
see Supported Distributions.

4.11.2 Dropped Features

The following features have been dropped. If you make use of them consider to use the KIWI
Legacy version.

Split systems The KIWI Legacy version supports building of split systems which uses a static
definition of files and directories marked as read-only or read-write. Evolving technolo-
gies like overlayfs makes this feature obsolete.

ZFS filesystem The successor for ZFS is Btrfs in the opensource world. All major distribu-
tions put on Btrfs. This and the proprietary attitude of ZFS obsoletes the feature.

Reiserfs filesystem The number of people using this filesystem is decreasing. For image build-
ing reiserfs was an interesting filesystem however with Btrfs and XFS there are good non
inode based alternatives out there. Therefore we don’t continue supporting Reiserfs.

Btrfs seed based live systems A Btrfs seed device is an alternative for other copy on write
filesystems like overlayfs. Unfortunately the stability of the seed device when used as
cow part in a live system was not as good as we provide with overlayfs and clicfs. There-
fore this variant is no longer supported. We might think of adding this feature back if
people demand it.

Ixc container format Ixc has a successor in docker based on the former 1xc technology. Many
distributions also dropped the 1xc tools from the distribution in favour of docker.

4.11. Legacy KIWI vs. KIWI Next Generation (KIWI NG) 39

https://github.com/OSInside/kiwi
http://download.opensuse.org/repositories/Virtualization:/Appliances

KIWI NG Documentation, Release 9.20.6

OEM Recovery/Restore Recovery/Restore in the world of images has been moved from the
operating system layer into higher layers. For example, in private and public Cloud envi-
ronments disk and image recovery as well as backup strategies are part of Cloud services.
Pure operating system recovery and snapshots for consumer machines are provided as
features of the distribution. SUSE as an example provides this via Rear (Relax-and-
Recover) and snapshot based filesystems (btrfs+snapper). Therefore the recovery feature
offered in the KIWI Legacy version will not be continued.

Partition based install method in OEM install image The section Deployment Methods de-
scribes the supported OEM installation procedures. The KIWI Legacy version also pro-
vided a method to install an image based on the partitions of the OEM disk image. Instead
of selecting one target disk to dump the entire image file to, the user selects target par-
titions. Target partitions could be located on several disks. Each partition of the OEM
disk image must be mapped on a selectable target partition. It turned out, users needed a
lot of experience in a very sensitive area of the operating system. This is contrary to the
idea of images to be dumped and be happy. Thus the partition based install method will
not be continued.

4.11.3 Compatibility

The KIWI Legacy version can be installed and used together with KIWI NG.

Note: Automatic Link Creation for kiwi Command

Note the python3-kiwi package uses the alternatives mechanism to setup a symbolic link named
kiwi to the real executable named kiwi-ng. If the link target /usr/bin/kiwi already
exists on your system, the alternative setup will skip the creation of the link target because it
already exists.

From an appliance description perspective, both versions are fully compatible. Users can build
their appliances with both versions and the same appliance description. If the appliance de-
scription uses features KIWI NG does not provide, the build will fail with an exception early.
If the appliance description uses next generation features like the selection of the initrd system,
it’s not possible to build that with the KIWI Legacy, unless the appliance description properly
encapsulates the differences into a profile.

KIWI NG also provides the ——compat option and the kiwicompat tool to be able to use
the same commandline as provided with the KIWI Legacy version.

40 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

4.12 Overview

KIWI NG builds so-called system images (a fully installed and optionally configured system
in a single file) of a Linux distribution in two steps (for further details, see /mage Building
Process):

1. Prepare operation: generate an unpacked image tree of your image. The unpacked tree
is a directory containing the future file system of your image, generated from your image
description.

2. Create operation: the unpacked tree generated in step 1 is packaged into the format
required for the final usage (e.g. a gcow2 disk image to launch the image with QEMU).

KIWI NG executes these steps using the following components, which it expects to find in the
description directory:

1. config.xml: The Image Description

This XML file contains the image description, which is a collection of general settings
of the final image, like the partition table, installed packages, present users, etc.

The filename config.xml is not mandatory, the image description file can also have
an arbitrary name plus the « . kiwi extension. KIWI NG first looks fora config.xml
file. If it cannot be found, it picks the first x . kiwi file.

2. config.shand images. sh: User Defined Scripts

If present, these configuration shell scripts run at the end of the prepare operation
(config.sh) or at the beginning of the create operation (images.sh). They can
be used to fine tune the image in ways that are not possible via the settings provided in
config.xml.

3. Overlay tree directory

The overlay tree is a folder (called root) or a tarball (called root . tar.gz) that con-
tains files and directories that will be copied into the unpacked image tree during the
Prepare operation. The copying is executed after all the packages included in config.
xml have been installed. Any already present files are overwritten.

4. CD root user data

For live ISO images and install ISO images an optional archive is supported. This is a tar
archive matching the name config-cdroot.tar[.compression_postfix].

If present, the archive will be unpacked as user data on the ISO image. For example, this
is used to add license files or user documentation. The documentation can then be read
directly from the CD/DVD without booting from the media.

5. Archives included in the config.xml file.

The archives that are included in <packages> using the <archive> element (see
The archive element):

4.12. Overview 41

KIWI NG Documentation, Release 9.20.6

<packages type="image">
<archive name="custom-archive.tgz"/>
</packages>

4.13 Image Building Process

KIWI NG creates images in a two step process: The first step, the prepare operation, generates a
so-called unpacked image tree (directory) using the information provided in the config.xml
configuration file (see The Image Description)

The second step, the create operation, creates the packed image or image in the specified format

based on the unpacked image tree and the information provided in the config.xml configu-
ration file.

)

- ."f — -~

// L :.

. Package Source
N~

|
J/

Image Description / Unpacked Image

Packed Image o

Serve it...

Fig. 1: Image Creation Architecture

42 Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

4.13.1 The Prepare Step

As the first step, KIWI NG creates an unpackaged image tree, also called “root tree”. This
directory will be the installation target for software packages to be installed during the image
creation process.

For the package installation, KIWI NG relies on the package manager specified in the
packagemanager element in config.xml. KIWI NG supports the following package
managers: dnf, zypper (default) and apt—-get.

The prepare step consists of the following substeps:
1. Create Target Root Directory

KIWI NG aborts with an error if the target root tree already exists to avoid accidental
deletion of an existing unpacked image.

2. Install Packages

First, KIWI NG configures the package manager to use the repositories specified in the
configuration file, via the command line, or both. After the repository setup, the packages
specified in the boot st rap section of the image description are installed in a tempo-
rary directory external to the target root tree. This establishes the initial environment
to support the completion of the process in a chroot setting. The essential packages are
filesystemand glibc—-locale to specify as part of the bootstrap. The dependency
chain of these two packages is usually sufficient to populate the bootstrap environment
with all required software to support the installation of packages into the new root tree.
The aforementioned two packages might not be enough for every distribution. Consult
the kiwi-descriptions repository containing examples for various Linux distributions.

The installation of software packages through the selected package manager may install
unwanted packages. Removing these packages can be accomplished by marking them
for deletion in the image description, see Adding and removing packages.

3. Apply the Overlay Tree

Next, KIWI NG applies all files and directories present in the overlay directory named
root or in the compressed overlay root . tar. gz to the target root tree. Files already
present in the target root directory are overwritten. This allows you to overwrite any file
that was installed by one of the packages during the installation phase.

4. Apply Archives

All archives specified in the archive element of the config.xml file are applied in
the specified order (top to bottom) after the overlay tree copy operation is complete (see
The archive element). Files and directories are extracted relative to the top level of the
new root tree. As with the overlay tree, it is possible to overwrite files already existing in
the target root tree.

5. Execute the user-defined script config. sh

At the end of the preparation stage the script config. sh is executed (if present). It
is run in the top level directory of the target root tree. The script’s primary function

4.13. Image Building Process 43

https://github.com/OSInside/kiwi-descriptions/

KIWI NG Documentation, Release 9.20.6

is to complete the system configuration, for example, to activate services. See Image
Customization via the config.sh Shell Script section for further details.

. Modify the Root Tree

The unpacked image tree is now finished to be converted into the final image in the
create step. It is possible to make manual modifications to the unpacked tree before it is
converted into the final image.

Since the unpacked image tree is just a directory, it can be modified using the standard
tools. Optionally, it is also possible to “change root (chroot)” into it, for instance
to invoke the package manager. Beside the standard file system layout, the unpacked
image tree contains an additional directory named / image that is not present in a regular
system. It contains information KIWI NG requires during the create step, including a
copy of the config.xml file.

By default, KIWI NG will not stop after the prepare step and will directly proceed with
the create step. Therfore to perform manual modifications, proceed as follows:

$ kiwi-ng system prepare SARGS
$ # make your changes
$ kiwi-ng system create SARGS

Warning: Modifications of the unpacked root tree

Do not make any changes to the system, since they are lost when re-running the
prepare step again. Additionally, you may introduce errors that occur during the
create step which are difficult to track. The recommended way to apply changes to
the unpacked image directory is to change the configuration and re-run the prepare
step.

4.13.2 The Create Step

KIWI NG creates the final image during the create step: it converts the unpacked root tree into
one or multiple output files appropriate for the respective build type.

It is possible to create multiple images from the same unpacked root tree, for example, a self
installing OEM image and a virtual machine image from the same image description. The only
prerequisite is that both image types are specified in config.xml.

During the create step the following operations are performed by KIWI NG:

1. Execute the User-defined Script images. sh

At the beginning of the image creation process the script named images . sh is executed
(if present). It is run in the top level directory of the unpacked root tree. The script
is usually used to remove files that are no needed in the final image. For example, if
an appliance is being built for a specific hardware, unnecessary kernel drivers can be
removed using this script.

See Image Customization via the images.sh Shell Script for further details.

44

Chapter 4. Concept and Workflow

KIWI NG Documentation, Release 9.20.6

2. Create the Requested Image Type

KIWI NG converts the unpacked root into an output format appropriate for the requested
build type.

4.13. Image Building Process 45

CHAPTER
FIVE

WORKING WITH IMAGES

These sections contains some “low level” topics which are useful for different image types.

5.1 Deploy ISO Image on an USB Stick

Abstract

This page provides further information for handling ISO images built with KIWI NG and
references the following articles:

* Build an ISO Hybrid Live Image

In KIWI NG all generated ISO images are created to be hybrid. This means, the image can be
used as a CD/DVD or as a disk. This works because the ISO image also has a partition table
embedded. With more and more computers delivered without a CD/DVD drive this becomes
important.

The very same ISO image can be copied onto a USB stick and used as a bootable disk. The
following procedure shows how to do this:

1. Plug in a USB stick

Once plugged in, check which Unix device name the stick was assigned to. The following
command provides an overview about all linux storage devices:

$ 1lsblk

2. Dump the ISO image on the USB stick:

Warning: Make sure the selected device really points to your stick because the
following operation can not be revoked and will destroy all data on the selected device

$ dd if=LimeJeOS-Leap-15.1.x86_64-1.15.1.1is0 of=/dev/
—<stickdevice>

46

KIWI NG Documentation, Release 9.20.6

3. Boot from your USB Stick

Activate booting from USB in your BIOS/UEFI. As many firmware has different proce-
dures on how to do it, look into your user manual. Many firmware offers a boot menu
which can be activated at boot time.

5.2 Deploy ISO Image as File on a FAT32 Formated USB
Stick

Abstract

This page provides further information for handling ISO images built with KIWI NG and
references the following articles:

* Build an ISO Hybrid Live Image

In KIWI NG, all generated ISO images are created to be hybrid. This means, the image can be
used as a CD/DVD or as a disk. The deployment of such an image onto a disk like an USB stick
normally destroys all existing data on this device. Most USB sticks are pre-formatted with a
FAT32 Windows File System and to keep the existing data on the stick untouched a different
deployment needs to be used.

The following deployment process copies the ISO image as an additional file to the USB stick
and makes the USB stick bootable. The ability to boot from the stick is configured through a
SYSLINUX feature which allows to loopback mount an ISO file and boot the kernel and initrd
directly from the ISO file.

The initrd loaded in this process must also be able to loopback mount the ISO file to access the
root filesystem and boot the live system. The dracut initrd system used by KIWI NG provides
this feature upstream called as “iso-scan”. Therefore all KIWI NG generated live ISO images
supports this deployment mode.

For copying the ISO file on the USB stick and the setup of the SYSLINUX bootloader to make
use of the “iso-scan” feature an extra tool named 1ive-grub-stick exists. The following
procedure shows how to setup the USB stick with 1ive-grub-stick:

1. Install the 1ive—-grub-stick package from software.opensuse.org:
2. Plugin a USB stick

Once plugged in, check which Unix device name the FAT32 partition was assigned to.
The following command provides an overview about all storage devices and their filesys-
tems:

$ sudo lsblk —--fs

3. Call the 1ive-grub—-stick command as follows:

Assuming ‘““/dev/sdz1” was the FAT32 partition selected from the output of the 1sblk
command:

5.2. Deploy ISO Image as File on a FAT32 Formated USB Stick 47

KIWI NG Documentation, Release 9.20.6

$ sudo live—-grub-stick LimeJeOS-Leap-15.1.x86_64-1.15.1.is0 /
—~dev/sdzl

4. Boot from your USB Stick

Activate booting from USB in your BIOS/UEFI. As many firmware has different pro-
cedures on how to do it, look into your user manual. EFI booting from iso image is
not supported at the moment, for EFI booting use —isohybrid option with live-grub-stick,
however note that all the data on the stick will be lost. Many firmware offers a boot menu
which can be activated at boot time. Usually this can be reached by pressing the Esc or
F12 keys.

5.3 Image Description for Amazon EC2

Abstract

This page provides further information for handling vmx images built with KIWI NG and
references the following articles:

* Build a Virtual Disk Image

A virtual disk image which is able to boot in the Amazon EC2 cloud framework has to comply
the following constraints:

* Xen tools and libraries must be installed
* cloud-init package must be installed

* cloud-init configuration for Amazon must be provided

Grub bootloader modules for Xen must be installed

AWS tools must be installed
* Disk size must be set to 10G
* Kernel parameters must allow for xen console
To meet this requirements add or update the KIWI NG image description as follows:
1. Software packages

Make sure to add the following packages to the package list

Note: Package names used in the following list matches the package names of the SUSE
distribution and might be different on other distributions.

<package name="aws-cli"/>
<package name="grub2-x86_64-xen"/>

(continues on next page)

48 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

<package name="xen-libs"/>
<package name="xen-tools-domU"/>
<package name="cloud-init"/>

2. Image Type definition

Update the vimx image type setup as follows

<type image="vmx"

filesystem="ext4"
bootloader="grub2"
kernelcmdline="console=xvc0O multipath=off net.ifnames=0"
boottimeout="1"
devicepersistency="by-label"
firmware="ec2">

<size unit="M">10240</size>

<machine xen_ loader="hvmloader"/>

</type>

3. Cloud Init setup

Cloud init is a service which runs at boot time and allows to customize the system by
activating one ore more cloud init modules. For Amazon EC2 the following configuration
file /etc/cloud/cloud. cfg needs to be provided as part of the overlay files in your
KIWI NG image description

users:
- default

disable_root: true
preserve_hostname: false
syslog_fix perms: root:root

datasource_list: [NoCloud, Ec2, None]

cloud init modules:
— migrator
- bootcmd
- write-files
— growpart
— resizefs
— set_hostname
- update_hostname
— update_etc_hosts
— ca—certs
- rsyslog
— users—-groups
— ssh

cloud_config modules:

(continues on next page)

5.3. Image Description for Amazon EC2 49

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

— mounts

— ssh-import-id

- locale

- set-passwords

— package-update-upgrade—install
- timezone

cloud final modules:
- scripts—-per-once
- scripts—-per-boot
- scripts—-per—-instance
- scripts-user
- ssh-authkey-fingerprints
- keys—-to-console
— phone-home
— final-message
— power-state-change

system_info:
default_user:
name: ec2-user

gecos: "cloud-init created default user"
lock _passwd: True
sudo: ["ALL=(ALL) NOPASSWD:ALL"]
shell: /bin/bash
paths:

cloud dir: /var/lib/cloud/
templates_dir: /etc/cloud/templates/
ssh _svcname: sshd

An image built with the above setup can be uploaded into the Amazon EC2 cloud and registered
as image. For further information on how to upload to EC2 see: ec2uploadimg

5.4 Image Description for Microsoft Azure

Abstract

This page provides further information for handling vmx images built with KIWI NG and
references the following articles:

* Build a Virtual Disk Image

A virtual disk image which is able to boot in the Microsoft Azure cloud framework has to
comply the following constraints:

* Hyper-V tools must be installed

50 Chapter 5. Working with Images

https://github.com/SUSE-Enceladus/ec2imgutils

KIWI NG Documentation, Release 9.20.6

* Microsoft Azure Agent must be installed
* Disk size must be set to 30G
» Kernel parameters must allow for serial console
To meet this requirements update the KIWI NG image description as follows:
1. Software packages

Make sure to add the following packages to the package list

Note: Package names used in the following list matches the package names of the SUSE
distribution and might be different on other distributions.

<package name="hyper-v"/>
<package name="python-azure—-agent"/>

2. Image Type definition

Update the vmx image type setup as follows

<type image="vmx"
filesystem="ext4"
boottimeout="1"
kernelcmdline="console=ttyS0 rootdelay=300 net.ifnames=0"
devicepersistency="by-uuid"
format="vhd-fixed"
formatoptions="force_size"
bootloader="grub2"
bootpartition="true"
bootpartsize="1024">

<size unit="M">30720</size>
</type>

An image built with the above setup can be uploaded into the Microsoft Azure cloud and
registered as image. For further information on how to upload to Azure see: azurectl

5.5 Image Description for Google Compute Engine

Abstract

This page provides further information for handling vmx images built with KIWI NG and
references the following articles:

* Build a Virtual Disk Image

A virtual disk image which is able to boot in the Google Compute Engine cloud framework has
to comply the following constraints:

5.5. Image Description for Google Compute Engine 51

https://github.com/SUSE-Enceladus/azurectl

KIWI NG Documentation, Release 9.20.6

KIWI NG type must be an expandable disk
Google Compute Engine init must be installed
Disk size must be set to 10G

Kernel parameters must allow for serial console

To meet this requirements update the KIWI NG image description as follows:

1.

Software packages

Make sure to add the following packages to the package list

Note: Package names used in the following list matches the package names of the SUSE
distribution and might be different on other distributions.

<package name="google-compute-engine—-init"/>

Image Type definition

To allow the image to be expanded to the configured disk geometry of the instance started
by Google Compute Engine it is suggested to let KIWI NG’s OEM boot code take over
that task. It would also be possible to try cloud-init’s resize module but we found conflicts
when two cloud init systems, google-compute-engine—init and cloud-init
were used together. Thus for now we stick with KIWI NG’s boot code which can resize
the disk from within the initrd before the system gets activated through systemd.

Update the vmx image type setup to be changed into an expandable (oem) type as fol-
lows:

<type image="oem"
initrd_system="dracut"
filesystem="ext4" boottimeout="1"
kernelcmdline="console=ttyS0,38400n8 net.ifnames=0"
format="gce"
bootloader="grub2">
<size unit="M">10240</size>
<oemconfig>
<oem-swap>false</oem-swap>
</oemconfig>
</type>

An image built with the above setup can be uploaded into the Google Compute Engine
cloud and registered as image. For further information on how to upload to Google see:
google-cloud-sdk on software.opensuse.org

52

Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

5.6 Setting Up a Network Boot Server

Abstract

This page provides further information for handling PXE images built with KIWI NG and
references the following articles:

* Build a PXE Root File System Image

To be able to deploy PXE bot images created with KIWI NG, you need to set up a network boot
server providing the services DHCP and atftp.

5.6.1 Installing and Configuring atftp

1. Install the packages atftp and kiwi-pxeboot.

2. Start the atftpd service by calling:

$ systemctl start atftpd.socket
$ systemctl start atftpd

5.6.2 Installing and Configuring DHCP

Contrary to the atftp server setup the following instructions can only serve as an example.
Depending on your network structure, the IP addresses, ranges and domain settings need to be
adapted to allow the DHCP server to work within your network. If you already have a DHCP
server running in your network, make sure that the filename and next-server directives
are correctly set on this server.

The following steps describe how to set up a new DHCP server instance using dnsmasq:
1. Install the dnsmasq package.

2. Create the file /etc/dnsmasqg. conf and insert the following content:

Note: Placeholders

Replace all placeholders (written in uppercase) with data fitting your network setup.

Don't function as a DNS server:
port=0

Log lots of extra information about DHCP transactions.
log—-dhcp

Set the root directory for files available via FTP,

(continues on next page)

5.6. Setting Up a Network Boot Server 53

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

usually "/srv/tftpboot":
tftp-root=TFTP_ROOT_DIR

The boot filename, Server name, Server Ip Address
dhcp-boot=pxelinux.0,,BOOT_SERVER_IP

Disable re-use of the DHCP servername and filename fields as_
—extra

option space. That's to avoid confusing some old or broken

DHCP clients.

dhcp-no-override

PXE menu. The first part is the text displayed to the user.
The second 1is the timeout, 1n seconds.
pxe-prompt="Booting FOG Client", 1

The known types are x86PC, PC98, IA64 EFI, Alpha, Arc_x86,

Intel Lean Client, IA32 EFI, BC_EFI, Xscale EFI and X86-64 _EFT
This option is first and will be the default if there is no_
—input

from the user.

pxe-service=X86PC, "Boot to FOG", pxelinux.0
pxe-service=X86-64_EFI, "Boot to FOG UEFI", ipxe
pxe-service=BC_EFI, "Boot to FOG UEFI PXE-BC", ipxe

dhcp-range=BOOT_SERVER_IP, proxy

3. Run the dnsmasq server by calling:

systemctl start dnsmasqg

5.7 Setting Up YaST at First Boot

Abstract

This page provides information how to setup the KIWI NG XML description to start the
SUSE YaST system setup utility at first boot of the image

To be able to use YaST in a non interactive way, create a YaST profile which tells the autoyast
module what to do. To create the profile, run:

yast autoyast

Once the YaST profile exists, update the KIWI NG XML description as follows:
1. Edit the KIWI NG XML file and add the following package to the <packages

54 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

type="1image"> section:

<package name="yast2-firstboot"/>

2. Copy the YaST profile file as overlay file to your KIWI NG image description overlay
directory:

cd IMAGE_DESCRIPTION_DIRECTORY
mkdir -p root/etc/YaST2
cp PROFILE_FILE root/etc/YaST2/firstboot.xml

3. Copy and activate the YaST firstboot template. This is done by the following instructions
which needs to be written into the KIWI NG config. sh which is stored in the image
description directory:

sysconfig firsboot=/etc/sysconfig/firstboot
sysconfig_ template=/var/adm/fillup-templates/sysconfig.firstboot
if [! -e "S{sysconfig_firsboot}" then

i
" "S{sysconfig_firsboot }"

cp "S{sysconfig_template
fi

touch /var/lib/YaST2/reconfig_system

5.8 PXE Client Setup Configuration

Abstract

This page provides further information for handling PXE images built with KIWI NG and
references the following articles:

* Build a PXE Root File System Image

All PXE boot based deployment methods are controlled by configuration files located in /srv/
tftpboot /KIWI on the PXE server. Such a configuration file can either be client-specific
(config. MAC_ADDRESS, for example config.00.AB.F3.11.73.C8), or generic (config.default).

In an environment with heterogeneous clients, this allows to have a default configuration suit-
able for the majority of clients, to have configurations suitable for a group of clients (for ex-
ample machines with similar or identical hardware), and individual configurations for selected
machines.

The configuration file contains data about the image and about configuration, synchronization,
and partition parameters. The configuration file has got the following general format:

IMAGE="device;name;version; srvip;bsize;compressed, ...,"

DISK="device"

(continues on next page)

5.8. PXE Client Setup Configuration 55

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

PART="size;id;Mount, ..., size;id;Mount"
RAID="raid-level;devicel;device2;..."

AOEROOT=ro—-device [, rw—device]
NBDROOT="ip—-address;export—-name;device; swap—-export—name; swap-device;
swrite—-export-name;write—-device”

NFSROOT="ip-address;path"

UNIONFS_CONFIGURATION="rw-partition, compressed-partition,overlayfs"

CONF="src;dest;srvip;bsize; [hash],...,src;dest;srvip;bsize; [hash]"

KIWI_BOOT_TIMEOUT="seconds"
KIWI_KERNEL_OPTIONS="optl opt2 ..."

REBOOT_IMAGE=1
RELOAD_CONFIG=1
RELOAD_IMAGE=1

Note: Quoting the Values

The configuration file is sourced by Bash, so the same quoting rules as for Bash apply.

Not all configuration options needs to be specified. It depends on the setup of the client which
configuration values are required. The following is a collection of client setup examples which
covers all supported PXE client configurations.

5.8.1 Setup Client with Remote Root

To serve the image from a remote location and redirect all write operations on a tmpfs, the
following setup is required:

When using AoE, see vblade toolchain for image export

AOEROOT=/dev/etherd/e0.1
UNIONEFS_CONFIG=tmpfs,aoe,overlay

When using NFS, see exports manual page for image export

NFSROOT="192.168.100.2; /srv/tftpboot/image/root"
UNIONES_ CONEIG=tmpfs,nfs,overlay

When using NBD, see nbd-server manual page for image export

NBDROOT=192.168.100.2; root_export; /dev/nbd0
UNIONES CONFIG=tmpfs,nbd,overlay

56 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

The above setup shows the most common use case where the image built with KIWI NG is
populated over the network using either AoE, NBD or NFS in combination with overlayfs
which redirects all write operations to be local to the client. In any case a setup of either AoE,
NBD or NFS on the image server is required beforehand.

5.8.2 Setup Client with System on Local Disk

To deploy the image on a local disk the following setup is required:

Note: In the referenced suse-leap-15.1-JeOS XML description the pxe type must be changed
as follows and the image needs to be rebuild:

<type image="pxe" filesystem="ext3" boot="netboot/suse-leapl5.1"/>

IMAGE="/dev/sda2; LimeJeOS-Leap—-15.1.x86_64;1.15.1;192.168.100.2;4096

"
—

DISK="/dev/sda"
PART="5;S;X,X;L; /"

The setup above will create a partition table on sda with a SMB swap partition (no mountpoint)
and the rest of the disk will be a Linux(L) partition with / as mountpoint. The (X) in the PART
setup specifies a place holder to indicate the default behaviour.

5.8.3 Setup Client with System on Local MD RAID Disk

To deploy the image on a local disk with prior software RAID configuration, the following
setup is required:

Note: In the referenced suse-leap-15.1-JeOS XML description the pxe type must be changed
as follows and the image needs to be rebuild:

<type image="pxe" filesystem="ext3" boot="netboot/suse-leapl5.1"/>

RAID="1; /dev/sda; /dev/sdb"
IMAGE="/dev/mdl; LimeJeOS-Leap—-15.1.x86_64;1.15.1;192.168.100.2;4096"
PART="5;S;x,x;L; /"

The first parameter of the RAID line is the RAID level. So far only raidl (mirroring) is sup-
ported. The second and third parameter specifies the raid disk devices which make up the array.
If a RAID line is present all partitions in PART will be created as RAID partitions. The first
RAID is named mdO0, the second one md1 and so on. It is required to specify the correct RAID
partition in the IMAGE line according to the PART setup. In this case mdO is reserved for the
SWAP space and md1 is reserved for the system.

5.8. PXE Client Setup Configuration 57

KIWI NG Documentation, Release 9.20.6

5.8.4 Setup Loading of Custom Configuration File(s)

In order to load for example a custom /etc/hosts file on the client, the following setup is
required:

CONF="hosts;/etc/hosts;192.168.1.2;4096; ffffffff"

On boot of the client KIWI NG’s boot code will fetch the host s file from the root of the server
(192.168.1.2) with 4k blocksize and deploy it as /etc/hosts on the client. The protocol is
by default tftp but can be changed via the kiwiservertype kernel commandline option.
For details, see Setup a Different Download Protocol and Server

5.8.5 Setup Client to Force Reload Image

To force the reload of the system image even if the image on the disk is up-to-date, the following
setup is required:

RELOAD_IMAGE=1

The option only applies to configurations with a DISK/PART setup

5.8.6 Setup Client to Force Reload Configuration Files

To force the reload of all configuration files specified in CONF, the following setup is required:

RELOAD_CONFIG=1

By default only configuration files which has changed according to their md5sum value will be
reloaded. With the above setup all files will be reloaded from the PXE server. The option only
applies to configurations with a DISK/PART setup

5.8.7 Setup Client for Reboot After Deployment

To reboot the system after the initial deployment process is done the following setup is required:

REBOOT_IMAGE=1

5.8.8 Setup custom kernel boot options

To deactivate the kernel mode setting on local boot of the client the following setup is required:

KIWI_KERNEL_ OPTIONS="nomodeset"

58 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

Note: This does not influence the kernel options passed to the client if it boots from the
network. In order to setup those the PXE configuration on the PXE server needs to be changed

5.8.9 Setup a Custom Boot Timeout

To setup a 10sec custom timeout for the local boot of the client the following setup is required.

KIWI_BOOT_TIMEOUT="10"

Note: This does not influence the boot timeout if the client boots off from the network.

5.8.10 Setup a Different Download Protocol and Server

By default all downloads controlled by the KIWI NG linuxrc code are performed by an atftp
call using the TFTP protocol. With PXE the download protocol is fixed and thus you cannot
change the way how the kernel and the boot image (initrd)is downloaded. As soon as Linux
takes over, the download protocols http, https and ftp are supported too. KIWI NG uses the curl
program to support the additional protocols.

To select one of the additional download protocols the following kernel parameters need to be
specified

kiwiserver=192.168.1.1 kiwiservertype=ftp

To set up this parameters edit the file /srv/tftpboot/pxelinux.cfg/default on
your PXE boot server and change the append line accordingly.

Note: Once configured all downloads except for kernel and initrd are now controlled by the
given server and protocol. You need to make sure that this server provides the same directory
and file structure as initially provided by the kiwi-pxeboot package

5.9 Image Description for Vagrant

Abstract

This page provides further information for handling VMX images built with KIWI NG and
references the following article:

* Build a Virtual Disk Image

5.9. Image Description for Vagrant 59

KIWI NG Documentation, Release 9.20.6

Vagrant is a framework to implement consistent processing/testing work environments based
on Virtualization technologies. To run a system, Vagrant needs so-called boxes. A box is a
TAR archive containing a virtual disk image and some metadata.

To build Vagrant boxes, you can use Packer which is provided by Hashicorp itself. Packer is
based on the official installation media (DVDs) as shipped by the distribution vendor.

The KIWI NG way of building images might be helpful, if such a media does not exist or does
not suit your needs. For example, if the distribution is still under development or you want
to use a collection of your own repositories. Note, that in contrast to Packer KIWI NG only
supports the libvirt and VirtualBox providers. Other providers require a different box layout
that is currently not supported by KIWI NG.

In addition, you can use the KIWI NG image description as source for the Open Build Service
which allows building and maintaining boxes.

Vagrant expects boxes to be setup in a specific way (for details refer to the Vagrant box docu-
mentation.), applied to the referenced KIWI NG image description from Build a Virtual Disk
Image, the following steps are required:

1. Update the image type setup

<type image="vmx" filesystem="ext4" format="vagrant"_
—boottimeout="0">
<vagrantconfig provider="libvirt" virtualsize="42"/>
<size unit="G">42</size>
</type>

This modifies the type to build a Vagrant box for the libvirt provider including a pre-
defined disk size. The disk size is optional, but recommended to provide some free space
on disk.

For the VirtualBox provider, the additional attribute
virtualbox_guest_additions_present can be set to true when the
VirtualBox guest additions are installed in the KIWI NG image:

<type image="vmx" filesystem="ext4" format="vagrant"_
—boottimeout="0">
<vagrantconfig
provider="virtualbox"
virtualbox_guest_additions_present="true"
virtualsize="42"
/>
<size unit="G">42</size>
</type>

The resulting Vagrant box then uses the vboxfs module for the synchronized folder
instead of rsync, that is used by default.

2. Add mandatory packages

<package name="sudo"/>
<package name="openssh"/>

60 Chapter 5. Working with Images

https://www.vagrantup.com
https://www.packer.io
https://openbuildservice.org
https://www.vagrantup.com/docs/boxes/base.html
https://www.vagrantup.com/docs/boxes/base.html

KIWI NG Documentation, Release 9.20.6

3. Add additional packages

If you have set the attribute virtualbox_guest_additions_present to true,
add the VirtualBox guest additions. For openSUSE the following packages are required:

<package name="virtualbox-guest-tools"/>
<package name="virtualbox-guest-x11"/>
<package name="virtualbox-guest-kmp-default"/>

Otherwise, you must add rsync:

<package name="rsync"/>

Note that KIWI NG cannot verify whether these packages are installed. If they are miss-
ing, the resulting Vagrant box will be broken.

4. Add Vagrant user

<users group='wvagrant'>

<user name='vagrant' password='vh4vwlN4alxKQ' home='/home/
—vagrant'/>
</users>

This adds the vagrant user to the system and applies the name of the user as the password
for login.

5. Integrate public SSH key

Vagrant requires an insecure public key pair' to be added to the authorized keys for the
user vagrant so that Vagrant itself can connect to the box via ssh. The key can be
obtained from GitHub and should be inserted into the file home/vagrant/.ssh/
authorized_keys, which can be added as an overlay file into the image description.

Keep in mind to set the file system permissions of home /vagrant/.ssh/ and home/
vagrant/.ssh/authorized_keys correctly, otherwise Vagrant will not be able
to connect to your box. The following snippet can be added to config. sh:

chmod 0600 /home/vagrant/.ssh/authorized_keys
chown -R vagrant:vagrant /home/vagrant/

6. Create the default shared folder

Vagrant boxes usually provide a default shared folder under /vagrant. Consider
adding this empty folder to your overlay files and ensure that the user vagrant has
write permissions to it.

Note, that the boxes that KIWI NG produces require this folder to exist, otherwise Va-
grant will not be able to start them properly.

7. Setup and start SSH daemon

In config. sh add the start of sshd:

! The insecure key is removed from the box when the it is first booted via Vagrant.

5.9. Image Description for Vagrant 61

https://github.com/hashicorp/vagrant/blob/master/keys/vagrant.pub

KIWI NG Documentation, Release 9.20.6

baselInsertService sshd

Also make sure to add the line UseDNS=no into /etc/ssh/sshd_config. This can
be done by an overlay file or by patching the file in the above mentioned config. sh
file.

8. Configure sudo for the Vagrant user

Vagrant expects to have passwordless root permissions via sudo to be able to setup
your box. Add the following line to /etc/sudoers or add it into a new file /etc/
sudoers.d/vagrant:

vagrant ALL=(ALL) NOPASSWD: ALL

You can also use visudo to verify that the resulting /etc/sudoers or /etc/
sudoers.d/vagrant are valid:

visudo -cf /etc/sudoers

if [$? —ne 0]; then
exit 1

fi

An image built with the above setup creates a Vagrant box file with the extension . vagrant.
libvirt.box or .vagrant.virtualbox.box. Add the box file to Vagrant with the
command:

vagrant box add my-box image-file.vagrant.libvirt.box

Note: Using the box with the libvirt provider requires alongside a correct Vagrant installation:
* the plugin vagrant-1ibvirt to be installed

* arunning libvirtd daemon

Once added to Vagrant, boot the box and log in with the following sequence of vagrant
commands:

vagrant init my-box
vagrant up —-provider libvirt
vagrant ssh

62 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

5.9.1 Customizing the embedded Vagrantfile

Warning: This is an advanced topic and not required for most users

Vagrant ship with an embedded Vagrant file that carries settings specific to this box, for
instance the synchronization mechanism for the shared folder. KIWI NG generates such a file
automatically for you and it should be sufficient for most use cases.

If a box requires different settings in the embedded Vagrant f£i 1e, then the user can provide
KIWI NG with a path to an alternative via the attribute embebbed_vagrantfile of the
vagrantconfig element: it specifies a relative path to the Vagrantfile that will be
included in the finished box.

In the following example snippet from config.xml we add a custom MyVagrantfile
into the box (the file should be in the image description directory next to config. sh):

<type image="vmx" filesystem="ext4" format="vagrant" boottimeout="0
>
<vagrantconfig
provider="1libvirt"
virtualsize="42"
embedded_vagrantfile="MyVagrantfile"
/>
<size unit="G">42</size>
</type>

The option to provide a custom Vagrant £1 1e can be combined with the usage of profiles (see
Image Profiles), so that certain builds can use the automatically generated Vagrantfile (in
the following example that is the Virtualbox build) and others get a customized one (the libvirt
profile in the following example):

<?xml version="1.0" encoding="utf-8"?>

<image schemaversion="7.1" name="LimeJeOS-Leap-15.1">
<!-- description goes here ——>
<profiles>
<profile name="libvirt" description="Vagrant Box for Libvirt"/>
<profile name="virtualbox" description="Vagrant Box for_
~VirtualBox"/>
</profiles>

<!-- general preferences go here ——>

<preferences profiles="libvirt">
<type
image="vmx"
filesystem="ext4"
format="vagrant"

(continues on next page)

5.9. Image Description for Vagrant 63

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

boottimeout="0"
bootloader="grub2">
<vagrantconfig
provider="1libvirt"
virtualsize="42"
embedded_vagrantfile="LibvirtVagrantfile"
/>
<size unit="G">42</size>
</type>
</preferences>
<preferences profiles="virtualbox">
<type
image="vmx"
filesystem="ext4"
format="vagrant"
boottimeout="0"
bootloader="grub2">
<vagrantconfig
provider="virtualbox"
virtualbox_guest_additions_present="true"
virtualsize="42"

/>
<size unit="G">42</size>
</type>
</preferences>
<!-— remaining box description ——>
</image>

5.10 Booting a Live ISO Image from Network

Abstract

This page provides further information for handling ISO images built with KIWI NG and
references the following articles:

* Build an ISO Hybrid Live Image

In KIWI NG, live ISO images can be configured to boot via PXE. This functionality requires
a network boot server setup on the system. Details how to setup such a server can be found in
Setting Up a Network Boot Server.

After the live ISO was built as shown in Build an ISO Hybrid Live Image, the following con-
figuration steps are required to boot from the network:

1. Extract initrd/kernel From Live ISO

64 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

The PXE boot process loads the configured kernel and initrd from the PXE server. For
this reason, those two files must be extracted from the live ISO image and copied to the
PXE server as follows:

mount LimeJeOS-Leap-15.1.x86_64-1.15.1.is0 /mnt

cp /mnt/boot/x86_64/loader/initrd /srv/tftpboot/boot/initrd
cp /mnt/boot/x86_64/loader/linux /srv/tftpboot/boot/linux
umount /mnt

n v U»r U

Note: This step must be repeated with any new build of the live ISO image

2. Export Live ISO To The Network

Access to the live ISO file is implemented using the AoE protocol in KIWI NG. This
requires the export of the live ISO file as remote block device which is typically done
with the vblade toolkit. Install the following package on the system which is expected
to export the live ISO image:

S zypper in vblade

Note: Not all versions of AoE are compatible with any kernel. This means the kernel on
the system exporting the live ISO image must provide a compatible aoe kernel module
compared to the kernel used in the live ISO image.

Once done, export the live ISO image as follows:

S vbladed 0 1 INTERFACE LimeJeOS-Leap-15.1.x86_64-1.15.1.1is0

The above command exports the given ISO file as a block storage device to the network of
the given INTERFACE. On any machine except the one exporting the file, it will appear
as /dev/etherd/e0.1 once the aoe kernel module was loaded. The two numbers,
0 and 1 in the above example, classifies a major and minor number which is used in the
device node name on the reading side, in this case e0.1. The numbers given at export
time must match the AOEINTERFACE name as described in the next step.

Note: Only machines in the same network of the given INTERFACE can see the ex-
ported live ISO image. If virtual machines are the target to boot the live ISO image they
could all be connected through a bridge. In this case INTERFACE is the bridge device.
The availability scope of the live ISO image on the network is in general not influenced
by KIWI NG and is a task for the network administrators.

3. Setup live ISO boot entry in PXE configuration

Edit the file /srv/tftpboot/pxelinux.cfg/default and create a boot entry
of the form:

5.10. Booting a Live ISO Image from Network 65

KIWI NG Documentation, Release 9.20.6

LABEL Live—-Boot

kernel boot/linux

append initrd=boot/initrd rd.kiwi.live.pxe
—root=1ive:AOEINTERFACE=e0.1

* The boot parameter rd.kiwi.live.pxe tells the KIWI NG boot process to
setup the network and to load the required aoe kernel module.

* The boot parameter root=1ive : AOEINTERFACE=e0. 1 specifies the interface
name as it was exported by the vbladed command from the last step. Currently
only AoE (Ata Over Ethernet) is supported.

4. Boot from the Network

Within the network which has access to the PXE server and the exported live ISO image,
any network client can now boot the live system. A test based on QEMU is done as
follows:

$ gemu -boot n

5.11 Deploy and Run System in a RamDisk

Abstract

This page provides further information for handling oem images built with KIWI NG and
references the following articles:

* Build an OEM Expandable Disk Image

If a machine should run the OS completely in memory without the need for any persistent
storage, the approach to deploy the image into a ramdisk serves this purpose. KIWI NG allows
to create a bootable ISO image which deploys the image into a ramdisk and activates that image
with the following oem type definition:

<type image="oem" filesystem="ext4" installiso="true" bootloader=
<"grub2" initrd_system="dracut" installboot="install" boottimeout=
—"1" kernelcmdline="rd.kiwi.ramdisk ramdisk size=2048000">
<oemconfig>
<oem-skip-verify>true</oem—-skip-verify>
<oem—unattended>true</oem-unattended>
<oem-unattended-id>/dev/raml</oem-unattended-id>
<oem-swap>false</oem-swap>
<oem-multipath-scan>false</oem—-multipath-scan>
</oemconfig>
</type>

The type specification above builds an installation ISO image which deploys the System Image
into the specified ramdisk device (/dev/ram1). The setup of the ISO image boots with a short

66 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

boot timeout of 1sec and just runs through the process without asking any questions. In a
ramdisk deployment the optional target verification, swap space and multipath targets are out
of scope and therefore disabled.

The configured size of the ramdisk specifies the size of the OS disk and must be at least of
the size of the System Image. The disk size can be configured with the following value in the
kernelcmdline attribute:

» ramdisk_size=kbyte-value”

An image built with the above setup can be tested in QEMU as follows:

$ gemu -cdrom LimeJeOS-Leap—-15.1.x86_64-1.15.1.install.iso

Note: Enough Main Memory

The machine, no matter if it’s a virtual machine like QEMU or a real machine, must provide
enough RAM to hold the image in the ramdisk as well as have enough RAM available to operate
the OS and its applications. The KIWI NG build image with the extension .raw provides the
System Image which gets deployed into the RAM space. Substract the size of the System
Image from the RAM space the machine offers and make sure the result is still big enough for
the use case of the appliance. In case of a virtual machine, attach enough main memory to fit
this calculation. In case of QEMU this can be done with the —m option

Like all other oem KIWI NG images, also the ramdisk setup supports all the deployments
methods as explained in Deployment Methods This means it’s also possible to dump the ISO
image on a USB stick let the system boot from it and unplug the stick from the machine because
the system was deployed into RAM

Note: Limitations Of RamDisk Deployments

Only standard images which can be booted by a simple root mount and root switch can be
used. Usually KIWI NG calls kexec after deployment such that the correct, for the image
created dracut initrd, will boot the image. In case of a RAM only system kexec does not work
because it would loose the ramdisk contents. Thus the dracut initrd driving the deployment is
also the environment to boot the system. There are cases where this environment is not suitable
to boot the system.

5.12 Custom Disk Partitions

Abstract

This page provides some details about what KIWI NG supports and does not support regard-
ing customization over the partition scheme. It also provides some guidance in case the user
requires some custom layout beyond KIWI NG supported features.

5.12. Custom Disk Partitions 67

KIWI NG Documentation, Release 9.20.6

By design, KIWI NG does not support a customized partition table. Alternatively, KIWI NG
supports the definition of user-defined volumes which covers most of common use cases. See
Custom Disk Volumes for further details about that.

KIWI NG has its own partitioning schema which is defined according to several different user
configurations: boot firmware, boot partition, expandable layouts, etc. Those supported fea-
tures have an impact on the partitioning schema. MBR or GUID partition tables are not flexi-
ble, carry limitations and are tied to some specific disk geometry. Because of that the preferred
alternative to disk layouts based on traditional partition tables is using flexible approaches like
logic volumes.

As an example, expandable OEM images is a relevant KIWI NG feature that is incompatible
with the idea of adding user defined partitions on the system area.

Despite no full customization is supported, some aspects of the partition schema can be cus-
tomized. KIWI NG supports:

1. Adding a spare partition before the root (/) partition.

It can be achieved by using the spare_part type attribute, see Schema Doc-
umentation.

2. Leaving some unpartitioned area at the end of the disk.

Setting some unpartitioned free space on the disk can be done using the
unpartitioned attribute of size element in type’s section. [LINK]

3. Expand built disks to a new size adding unpartitioned free space at the end of the disk.

A built image can be resized by using the kiwi-ng image resize com-
mand and set a new extended size for the disk. See KIWI NG commands docs
here.

5.12.1 Custom Partitioning at Boot Time

Adding additional partitions at boot time of KIWI NG images is also possible, however, setting
the tools and scripts for doing so needs to be handled by the user. A possible strategy to add
partitions on system area are described below.

The main idea consists on running a first boot service that creates the partitions that are needed.
Adding custom services is simple, use the following steps:

1. Create a unit file for a systemd service:

[Unit]

Description=Add a data partition
After=basic.target
Wants=basic.target

[Service]
Type=oneshot
ExecStart=/bin/bash /usr/local/bin/create_part

68 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

This systemd unit file will run at boot time once systemd reaches the basic
target. At this stage all basic services are up an running (devices mounted,
network interfaces up, etc.). In case the service is required to run on earlier
stages for some reason, default dependencies need to be disabled, see systemd
man pages.

2. Create partitioner shell script matching your specific needs

Consider the following steps for a partitioner shell script that creates a new
partition. Following the above unit file example the /usr/local/bin/
create_part script should cover the following steps:

a. Verify partition exists

Verify the required partition is not mounted neither exists. Exit zero (0)
if s already there.

Use tools such findmnt to find the root device and blkid or 1sblk
to find a partition with certain label or similar criteria.

b. Create a new partition
Create a new partition. On error, exit with non zero.

Use partitioner tools such as sgdisk that can be easily used in non in-
teractive scripts. Using partprobe to reload partition table to make OS
aware of the changes is handy.

c. Make filesystem

Add the desired filesystem to the new partitions. On error, exit with non
zero.

Regular filesystem formatting tools (mkfs.ext4 just to mention one)
can be used to apply the desired filesystem to the just created new par-
tition. At this stage it is handy to add a label to the filesystem for easy
recognition on later stages or script reruns.

d. Update fstab file
Just echo and append the desired entry in /etc/fstab.
e. Mount partition

mount --all will try to mount all fstab volumes, it just omits any
already mounted device.

3. Add additional files into the root overlay tree.

The above described unit files and partition creation shell script need to be
included into the overlay tree of the image, thus they should be placed into the
expected paths in root folder (or in root . tar. gz tarball).

4. Activate the service in config.sh

The service needs to be enabled during image built time to be run during the
very first boot. In can be done by adding the following snipped inside the

5.12. Custom Disk Partitions 69

https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html

KIWI NG Documentation, Release 9.20.6

config.sh.

5.13 Custom Disk Volumes

Abstract

This chapter provides high level explanations on how to handle volumes or subvolumes def-
initions for disk images using KIWI NG.

KIWI NG supports defining custom volumes by using the logical volume manager (LVM) for
the Linux kernel or by setting volumes at filesystem level when filesystem supports it (e.g.
btrfs).

Volumes are defined in the KIWI NG description file config.xml, using systemdisk.
This element is a child of the t ype. Volumes themselves are added via (multiple) volume
child elements of the systemdisk element:

<image schemaversion="7.1" name="openSUSE-Leap—-15.1">
<type image="ocem" filesystem="btrfs" preferlvm="true">
<systemdisk name="vgroup">
<volume name="usr/lib" size="1G" label="library"/>
<volume name="@root" freespace="500M"/>
<volume name="etc_volume" mountpoint="etc" copy_on_write=
~"false"/>
<volume name="bin_volume" size="all" mountpoint="/usr/bin"/>
</systemdisk>
</type>
</image>

Additional non-root volumes are created for each volume element. Volume details can be
defined by setting the following volume attributes:

* name: Required attribute representing the volume’s name. Additionally, this attribute is
interpreted as the mountpoint if the mountpoint attribute is not used.

* mountpoint: Optional attribute that specifies the mountpoint of this volume.

* size: Optional attribute to set the size of the volume. If no suffix (M or G) is used, then
the value is considered to be in megabytes.

Note: Special name for the root volume

One can use the @root name to refer to the volume mounted at /, in case some specific
size attributes for the root volume have to be defined. For instance:

<volume name="Qroot" size="4G"/>

70 Chapter 5. Working with Images

https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

* freespace: Optional attribute defining the additional free space added to the volume.
If no suffix (M or G) is used, the value is considered to be in megabytes.

* label: Optional attribute to set filesystem label of the volume.

* copy_on_write: Optional attribute to set the filesystem copy-on-write attribute for
this volume.

Warning: The size attributes for filesystem volumes, as for btrfs, are ignored and have no
effect.

The systemdi sk element additionally supports the following optional attributes:

* name: The volume group name, by default k iwiVG is used. This setting is only relevant
for LVM volumes.

* preferlvm: Boolean value instructing KIWI NG to prefer LVM even if the used
filesystem has its own volume management system.

5.14 Add or Update the Fstab File

Abstract

This page provides further information for customizing the /etc/fstab file which con-
trols the mounting of filesystems at boot time.

In KIWI NG, all major filesystems that were created at image build time are handled by KIWI
NG itself and setup in /et c/fstab. Thus there is usually no need to add entries or change
the ones added by KIWI NG. However depending on where the image is deployed later it might
be required to pre-populate fstab entries that are unknown at the time the image is build.

Possible use cases are for example:

* Adding NFS locations that should be mounted at boot time. Using autofs would be an
alternative to avoid additional entries to fstab. The information about the NFS location
will make this image specific to the target network. This will be independent of the mount
method, either fstab or the automount map has to provide it.

* Adding or changing entries in a read-only root system which becomes effective on first
boot but can’t be added at that time because of the read-only characteristics.

Note: Modifications to the fstab file are a critical change. If done wrongly the risk exists that
the system will not boot. In addition this type of modification makes the image specific to its
target and creates a dependency to the target hardware, network, etc... Thus this feature should
be used with care.

5.14. Add or Update the Fstab File 71

KIWI NG Documentation, Release 9.20.6

The optimal way to provide custom fstab information is through a package. If this can’t be
done the files can also be provided via the overlay file tree of the image description.

KIWI NG supports three ways to modify the contents of the /et c/fstab file:

Providing an /etc/fstab. append file If that file exists in the image root tree, KIWI NG
will take its contents and append it to the existing /etc/fstab file. The provided
/etc/fstab.append file will be deleted after successful modification.

Providing an /etc/fstab.patchfile The /etc/fstab.patch represents a patch file
that will be applied to /et ¢/ fstab using the pat ch program. This method also allows
to change the existing contents of /etc/fstab. On success /etc/fstab.patch
will be deleted.

Providing an /etc/fstab.script file The /etc/fstab.script represents an exe-
cutable which is called as chrooted process. This method is the most flexible one and
allows to apply any change. On success /etc/fstab.script will be deleted.

Note: All three variants to handle the fstab file can be used together. Appending happens first,
patching afterwards and the script call is last. When using the script call, there is no validation
that checks if the script actually handles fstab or any other file in the image rootfs.

5.15 Image Description Encrypted Disk

Abstract

This page provides further information for handling vmx images with an encrypted root
filesystem setup. The information here is based on top of the following article:

* Build a Virtual Disk Image

A virtual disk image can be partially or fully encrypted using the LUKS extension supported
by KIWI NG. A fully encrypted image also includes the data in /boot to be encrypted. Such
an image requests the passphrase for the master key to be entered at the bootloader stage.
A partialy encrypted image keeps /boot unencrypted and on an extra boot partition. Such
an image requests the passphrase for the master key later in the boot process when the root
partition gets accessed by the systemd mount service. In any case the master passphrase is
requested only once.

Update the KIWI NG image description as follows:
1. Software packages

Make sure to add the following package to the package list

Note: Package names used in the following list match the package names of the SUSE

72 Chapter 5. Working with Images

KIWI NG Documentation, Release 9.20.6

distribution and might be different on other distributions.

<package name="cryptsetup"/>

2. Image Type definition
Update the vimx image type setup as follows

Full disk encryption including /boot:

<type image="vmx"
image="vmx"
filesystem="ext4"
bootloader="grub2"
luks="1linux"
bootpartition="false">

</type>

Encrypted root partition with an unencrypted extra /boot partition:

<type image="vmx"
image="vmx"
filesystem="ext4"
bootloader="grub2"
luks="1linux"
bootpartition="true">

</type>

Note: The value for the 1uks attribute sets the master passphrase for the LUKS keyring.
Therefore the XML description becomes security critical and should only be readable by

trustworthy people

5.15. Image Description Encrypted Disk

73

CHAPTER
SIX

BUILDING IMAGES

Note: This document provides an overview about the supported KIWI NG image types. Before
building an image with KIWI NG it’s important to understand the different image types and
their meaning.

6.1 Build an ISO Hybrid Live Image

Abstract

This page explains how to build a live image. It contains:

* how to build an ISO image

* how to run it with QEMU

A Live ISO image is a system on a removable media, e.g CD/DVD or USB stick. Once built and
deployed it boots off from this media without interfering with other system storage components
making it a useful pocket system for testing and demo- and debugging-purposes.

To add a live ISO build to your appliance, create a t ype element with image set to iso in
your config.xml (see Build Types) as shown below:

<image schemaversion="6.9" name="JeOS-Tumbleweed">
<!-— snip ——>
<preferences>
<type image="iso" primary="true" flags="overlay"
—hybridpersistent_filesystem="ext4" hybridpersistent="true"/>
<!-- additional preferences —-—>
</preferences>
<!-— snip —-->
</image>

The following attributes of the t ype element are relevant when building live ISO images:

74

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

* flags: Specifies the live ISO technology and dracut module to use, can be set to
overlay or to dmsquash.

If setto overlay, the kiwi-live dracut module will be used to support a live ISO system
based on squashfs and overlayfs. If set to dmsquash, the dracut standard dmsquash-
live module will be used to support a live ISO system based on squashfs and the device
mapper. Note, both modules support a different set of live features. For details see
Decision for a live ISO technology

* hybridpersistent: Accepts true or false, if set to true then the resulting
image will be created with a COW file to keep data persistent over a reboot

* hybridpersistent_filesystem: The filesystem used for the COW file. Possible
values are ext 4 or xfs, with ext 4 being the default.

With the appropriate settings present in config.xml KIWI NG can now build the image:

$ sudo kiwi-ng —--type iso system build \

——description kiwi-descriptions/suse/x86_64/suse-leap-15.1-
~Je0Ss \

-—-target-dir /tmp/myimage

The resulting image is saved in the folder /tmp/myimage and can be tested with QEMU:

$ gemu —-cdrom LimeJeOS-Leap—-15.1.x86_64-1.15.1.is0 —-m 4096

The image is now complete and ready to use. See Deploy ISO Image on an USB Stick and
Deploy ISO Image as File on a FAT32 Formated USB Stick for further information concerning
deployment.

6.1.1 Decision for a live ISO technology

The decision for the overlay vs. dmsquash dracut module depends on the features one
wants to use. From a design perspective the overlay module is conceived for live ISO de-
ployments on disk devices which allows the creation of a write partition or cow file. The
dmsquash module is conceived as a generic mapping technology using device-mapper snap-
shots. The following list describes important live ISO features and their support status com-
pared to the overlay and dmsquash modules.

ISO scan Usable in the same way with both dracut modules. This feature allows to boot the
live ISO as a file from a grub loopback configured bootloader. The 1 ive-grub-stick
tool is just one example that uses this feature. For details how to setup ISO scan with the
overlay module see Deploy ISO Image as File on a FAT32 Formated USB Stick

ISO in RAM completely Usable with the dmsquash module through rd.1live.ram. The
overlay module does not support this mode but KIWI NG supports RAM only systems
as OEM deployment into RAM from an install ISO media. For details how to setup RAM
only deployments in KIWI NG see: Deploy and Run System in a RamDisk

Overlay based on overlayfs Usable with the overlay module. A squashfs compressed
readonly root gets overlayed with a readwrite filesystem using the kernel overlayfs
filesystem.

6.1. Build an ISO Hybrid Live Image 75

KIWI NG Documentation, Release 9.20.6

Overlay based on device mapper snapshots Usable with the dmsquash module. A
squashfs compressed readonly root gets overlayed with a readwrite filesystem using a
device mapper snapshot. This method was the preferred one before overlayfs existed in
the Linux kernel.

Media Checksum Verification Boot the live iso only for ISO checksum verification. This
is possible with both modules but the overlay module uses the checkmedia tool
whereas the upstream dmsquash module uses checkisomd5. The activation of the
verification process is done by passing the kernel option mediacheck forthe overlay
module and rd. 1live.check for the dmsquash module.

Live ISO through PXE boot Boot the live image via the network. This is possible with both
modules but uses different technologies. The overlay module supports network boot
only in combination with the AoE (Ata Over Ethernet) protocol. For details see Booting
a Live ISO Image from Network. The dmsquash module supports network boot by
fetching the ISO image into memory from root=11ive: using the 1ivenet module.

Persistent Data Keep new data persistent on a writable storage device. This can be done
with both modules but in different ways. The overlay module activates persistency
with the kernel boot parameter rd.live.overlay.persistent. If the persistent
setup cannot be created the fallback to the non persistent mode applies automatically.
The overlay module auto detects if it is used on a disk or ISO scan loop booted from
a file. If booted as disk, persistency is setup on a new partition of that disk. If loop
booted from file, persistency is setup on a new cow file. The cow file/partition setup can
be influenced with the kernel boot parameters: rd.live.overlay.cowfs and rd.
live.cowfile.mbsize. The dmsquash module configures persistency through
the rd.live.overlay option exclusively and does not support the automatic creation
of a write partition in disk mode.

dmsquash documentation

Documentation for the upstream dmsquash module can be found here. Options to setup
dmsquash are marked with rd.live

6.2 Build a Virtual Disk Image

Abstract

This chapter explains how to build a simple disk image, including:

* how to define a vmx image in the image description

* how to build a vmx image

* how to run it with QEMU

A Virtual Disk Image is a compressed system disk with additional metadata useful for cloud

76 Chapter 6. Building Images

http://man7.org/linux/man-pages/man7/dracut.cmdline.7.html

KIWI NG Documentation, Release 9.20.6

frameworks like Amazon EC2, Google Compute Engine, or Microsoft Azure.

To instruct KIWI NG to build a VMX image add a type element with image="vmx" in
config.xml. An example configuration for a 42 GB large VMDK image with 512 MB
RAM, an IDE controller and a bridged network interface is shown below:

<image schemaversion="7.1" name="JeOS-Tumbleweed">
<!-— snip ——>
<preferences>
<type image="vmx" filesystem="ext4"
format="vmdk" boottimeout="0"
bootloader="grub2">
<size unit="G">42</size>
<machine memory="512" guestOS="suse" HWversion="4">
<vmdisk id="0" controller="ide"/>
<vmnic driver="el000" interface="0" mode="bridged"/>
</machine>
</type>
<!-- additional preferences -—>
</preferences>
<!-— snip ——>
</image>

The following attributes of the t ype element are of special interest when building VMX im-
ages:

* format: Specifies the format of the virtual disk, possible values are: gce, ova,
gcow?2, vagrant, vimdk, vdi, vhd, vhdx and vhd-fixed

* formatoptions: Specifies additional format options passed to gemu-—img.
formatoptions is a comma separated list of format specific options in a
name=value format like gemu—img expects it. KIWI NG will forward the settings
from this attribute as a parameter to the —o option in the gemu—img call.

The size and machine child-elements of t ype can be used to customize the virtual machine
image further. We describe them in the following sections (see Modifying the Size of the Image
and Customizing the Virtual Machine).

Once your image description is finished (or you are content with a image from the example
descriptions and use one of them) build the image with KIWI NG:

$ sudo kiwi-ng —--type vmx system build \

——description kiwi-descriptions/suse/x86_64/suse-leap-15.1-Je0S
<\

-—target-dir /tmp/myimage

The created image will be in the target directory /tmp/myimage with the file extension .
raw.

The live image can then be tested with QEMU:

6.2. Build a Virtual Disk Image 77

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

$ gemu \

—drive file=LimeJeOS-Leap-15.1.x86_64-1.15.1.raw, format=raw,
wif=virtio \

-m 4096

For further information how to setup the image to work within a cloud framework see:
» Image Description for Amazon EC2
» Image Description for Microsoft Azure
* Image Description for Google Compute Engine

For information how to setup a Vagrant box, see: /mage Description for Vagrant.

6.2.1 Modifying the Size of the Image

The size child element of t ype specifies the size of the resulting disk image. The following
example shows a image description where 20 GB are added to the virtual machine image of
which 5 GB are left unpartitioned:

<image schemaversion="7.1" name="JeOS-Tumbleweed">
<!-— snip ——>
<preferences>
<type image="vmx" format="vmdk">
<size unit="G" additive="true" unpartitioned="5">20</size>
</type>
<!-- additional preferences —-—>
</preferences>
<!-— snip —-—>
</image>

The following optional attributes can be used to customize the image size further:

* unit: Defines the unit used for the provided numerical value, possible settings are M for
megabytes and G for gigabytes. The default unit are megabytes.

* additive: boolean value that determines whether the provided value will be added
to the current image’s size (additive="true") or whether it is the total size
(additive="false"). The defaultis false.

* unpartitioned: Specifies the image space in the image that will not be partitioned.
This value uses the same unit as defined in the attribute unit or the default.

78 Chapter 6. Building Images

https://docs.python.org/3/library/functions.html#type

KIWI NG Documentation, Release 9.20.6

6.2.2 Customizing the Virtual Machine

The machine child element of t ype can be used to customize the virtual machine configu-
ration which is used when the image is run, like the number of CPUs or the connected network
interfaces.

The following attributes are supported by the machine element:

* ovftype: The OVF configuration type. The Open Virtualization Format is a standard
for describing virtual appliances and distribute them in an archive called Open Virtual
Appliance (OVA). The standard describes the major components associated with a disk
image. The exact specification depends on the product using the format.

Supported values are zvm, powervm, xen and vmware.

* HWversion: The virtual machine’s hardware version (vmdk and ova formats only),
see https://kb.vmware.com/s/article/1003746 for further details which value to choose.

* arch: the VM architecture (vmdk format only), possible values are: 1x86 (= 1585
and 1686) and x86_64.

* xen_loader: the Xen target loader which is expected to load this guest, supported
values are: hvmloader, pygrub and pvgrub.

* guestOS: The virtual guest OS’ identification string for the VM (only applicable for
vmdk and ova formats, note that the name designation is different for the two formats).

* min_memory: The virtual machine’s minimum memory in MB (ova format only).
* max_memory: The virtual machine’s maximum memory in MB (ova format only).
* min_cpu: The virtual machine’s minimum CPU count (ova format only).

* max_cpu: The virtual machine’s maximum CPU count (ova format only).

* memory: The virtual machine’s memory in MB (all formats).

* ncpus: The umber of virtual CPUs available to the virtual machine (all formats).

Additionally, machine supports additional child elements that are covered in the following
subsections.

Modifying the VM Configuration Directly

The vmconfig—entry element is used to add entries directly into the virtual machine’s
configuration file. This is currently only supported for the vmdk format where the provided
strings are directly pasted into the . vmx file.

The vmconfig—entry element has no attributes and can appear multiple times, the entries
are added to the configuration file in the provided order. Note, that KIWI NG does not check
the entries for correctness. KIWI NG only forwards them.

The following example adds the two entries numvcpus = "4" and cpuid.
coresPerSocket = "2" into the VM configuration file:

6.2. Build a Virtual Disk Image 79

https://docs.python.org/3/library/functions.html#type
https://kb.vmware.com/s/article/1003746

KIWI NG Documentation, Release 9.20.6

<image schemaversion="7.1" name="openSUSE-15.1" displayname="Bob">
<preferences>
<type image="vmx" filesystem="ext4" format="vmdk"
bootloader="grub2" kernelcmdline="splash"
bootpartition="false">
<machine memory="512" guestOS="suse" HWversion="4">

<vmconfig—-entry>numvcpus = "4"</vmconfig-entry>
<vmconfig-entry>cpuid.coresPerSocket = "2"</vmconfig-entry>
</machine>
</type>
</preferences>
</image>

Adding Network Interfaces to the VM

Network interfaces can be explicitly specified for the VM when required via the vmnic ele-
ment. This can be used to add another bridged interface or to specify the driver which is being
used.

Note, that this element is only used for the vimdk image format.

In the following example we add a bridged network interface using the e1 000 driver:

<image schemaversion="7.1" name="openSUSE-15.1" displayname="Bob">
<preferences>
<type image="vmx" filesystem="btrfs"
bootloader="grub2" kernelcmdline="splash">
<machine memory="4096" guestOS="suse" HWversion="4">
<vmnic driver="el000" interface="0" mode="bridged"/>
</machine>
</type>
</preferences>
</image>

The vmnic element supports the following attributes:
* interface: mandatory interface ID for the VM’s network interface.
* driver: optionally the driver which will be used can be specified
* mac: this interfaces’ MAC address
* mode: this interfaces’ mode.

Note that KIWI NG will not verify the values that are passed to these attributes, it will only
paste them into the appropriate configuration files.

80 Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

Specifying Disks and Disk Controllers

The vindi sk element can be used to customize the disks and disk controllers for the virtual ma-
chine. This element can be specified multiple times, each time for each disk or disk controller
present.

Note that this element is only used for vimdk and ova image formats.

The following example adds a disk with the ID 0 using an IDE controller:

<image schemaversion="7.1" name="openSUSE-15.1" displayname="Bob">
<preferences>
<type image="vmx" filesystem="ext4" format="vmdk"
bootloader="grub2" kernelcmdline="splash"
bootpartition="false">
<machine memory="512" guestOS="suse" HWversion="4">
<vmdisk id="0" controller="ide"/>
</machine>
</type>
</preferences>
</image>

Each vmdi sk element can be further customized via the following optional attributes:

* controller: The disk controller used for the VM guest (vmdk format only). Sup-
ported values are: ide, buslogic, 1silogic, 1sisasl1l068, legacyESX and
pvscsi.

* device: The disk device to appear in the guest (xen format only).

* diskmode: The disk mode (vmdk format only), possible values are:
monolithicSparse, monolithicFlat, twoGbMaxExtentSparse,
twoGbMaxExtentFlat and streamOptimized (see also https://www.
vmware.com/support/developer/converter-sdk/conv60_apireference/vim.OvfManager.
CreateImportSpecParams.DiskProvisioningType.html).

* disktype: The type of the disk as it is internally handled by the VM (ova format
only). This attribute is currently unused.

e id: The disk ID of the VM disk (vmdk format only).

Adding CD/DVD Drives

KIWI NG supports the addition of IDE and SCSCI CD/DVD drives to the virtual machine
using the vmdvd element for the vmdk image format. In the following example we add two
drives: one with a SCSCI and another with a IDE controller:

<image schemaversion="7.1" name="openSUSE-15.1" displayname="Bob">
<preferences>
<type bootloader="grub2" filesystem="ext4"
image="vmx" kernelcmdline="splash">

(continues on next page)

6.2. Build a Virtual Disk Image 81

https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.OvfManager.CreateImportSpecParams.DiskProvisioningType.html
https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.OvfManager.CreateImportSpecParams.DiskProvisioningType.html
https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.OvfManager.CreateImportSpecParams.DiskProvisioningType.html
https://docs.python.org/3/library/functions.html#id

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

<machine memory="512" xen_loader="hvmloader">
<vmdvd id="0" controller="scsi"/>
<vmdvd id="1" controller="ide"/>
</machine>
</type>
</preferences>
</image>

The vmdvd element features just these two mandatory attributes:
e id: The CD/DVD ID of the drive

* controller: The CD/DVD controller used for the VM guest, supported values are
ide and scsi.

6.3 Build an OEM Expandable Disk Image

Abstract

This page explains how to build an OEM disk image. It contains:
* how to build an OEM image
* how to deploy an OEM image

* how to run the deployed system

An OEM disk represents the system disk with the capability to auto expand the disk and its
filesystem to a custom disk geometry. This allows deploying the same OEM image on target
systems of a different hardware setup.

The following example shows how to build and deploy an OEM disk image based on openSUSE
Leap using a QEMU virtual machine as OEM target system:

1. Make sure you have checked out the example image descriptions, see Example Appliance
Descriptions.

2. Build the image with KIWI NG:

$ sudo kiwi-ng —--type oem system build \

——description kiwi-descriptions/suse/x86_64/suse-leap-15.1-
—~Je0S \

--target-dir /tmp/myimage

Find the following result images below /tmp/myimage.

* The OEM disk image with the suffix . raw is an expandable virtual disk. It can
expand itself to a custom disk geometry.

82 Chapter 6. Building Images

https://docs.python.org/3/library/functions.html#id

KIWI NG Documentation, Release 9.20.6

* The OEM installation image with the suffix install.iso is ahybrid installation
system which contains the OEM disk image and is capable to install this image on
any target disk.

6.3.1 Deployment Methods
The basic idea behind an OEM image is to provide the virtual disk data for OEM vendors to
support easy deployment of the system to physical storage media.
There are the following basic deployment strategies:
1. Manual Deployment
Manually deploy the OEM disk image onto the target disk
2. CD/DVD Deployment

Boot the OEM installation image and let KIWI NG’s OEM installer deploy the OEM
disk image from CD/DVD or USB stick onto the target disk

3. Network Deployment

PXE boot the target system and let KIWI NG’s OEM installer deploy the OEM disk
image from the network onto the target disk

6.3.2 Manual Deployment

The manual deployment method can be tested using virtualization software such as QEMU,
and an additional virtual target disk of a larger size. The following steps shows how to do it:

1. Create a target disk

$ gemu-img create target_disk 20g

Note: Retaining the Disk Geometry

If the target disk geometry is less or equal to the geometry of the OEM disk image itself,
the disk expansion performed for a physical disk install during the OEM boot workflow
will be skipped and the original disk geometry stays untouched.

2. Dump OEM image on target disk

$ dd if=LimeJeOS-Leap-15.1.x86_64-1.15.1.raw of=target_disk
—conv=notrunc

3. Boot the target disk

$ gemu -hda target_disk -m 4096

6.3. Build an OEM Expandable Disk Image 83

KIWI NG Documentation, Release 9.20.6

At first boot of the target_disk the system is expanded to the configured storage layout.
By default the system root partition and filesystem is resized to the maximum free space
available.

6.3.3 CD/DVD Deployment

The deployment from CD/DVD via the installation image can also be tested using virtualization
software such as QEMU. The following steps shows how to do it:

1. Create a target disk
Follow the steps above to create a virtual target disk

2. Boot the OEM installation image as CD/DVD with the target disk attached

$ gemu -cdromLimeJeOS-Leap-15.1.x86_64-1.15.1.install.iso —hda_
—target_disk -boot d -m 4096

Note: USB Stick Deployment

Like any other iso image built with KIWI NG, also the OEM installation image is a
hybrid image. Thus it can also be used on USB stick and serve as installation stick image
like it is explained in Build an ISO Hybrid Live Image

6.3.4 Network Deployment

The deployment from the network downloads the OEM disk image from a PXE boot server.
This requires a PXE network boot server to be setup as explained in Setting Up a Network Boot
Server

If the PXE server is running the following steps shows how to test the deployment process over
the network using a QEMU virtual machine as target system:

1. Make sure to create an installation PXE TAR archive along with your OEM im-
age by replacing the following setup in kiwi-descriptions/suse/x86_64/suse-leap-15.1-
JeOS/config.xml

Instead of

<type image="oem" installiso="true"/>

setup

<type image="oem" installpxe="true"/>

2. Rebuild the image, unpack the resulting LimeJeOS-Leap-15.1.x86_64-1.15.
l.install.tar.xz file to a temporary directory and copy the initrd and kernel im-
ages to the PXE server:

84 Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

a) Unpack installation tarball

mkdir /tmp/pxe && cd /tmp/pxe
tar —xf LimeJeOS-Leap—-15.1.x86_64-1.15.1.install.tar.xz

b) Copy kernel and initrd used for pxe boot

scp pxeboot.LimeJeOS-Leap—-15.1.x86_64-1.15.1.initrd.xz PXE_
—SERVER_TIP:/srv/tftpboot/boot/initrd

scp pxeboot.LimeJeOS-Leap—-15.1.x86_64-1.15.1.kernel PXE_
—SERVER_IP:/srv/tftpboot/boot/linux

3. Copy the OEM disk image, MDS5 file, system kernel, initrd and bootoptions to the PXE
boot server:

Activation of the deployed system is done via kexec of the kernel and initrd provided
here.

a) Copy system image and MD5 checksum

scp LimeJeOS-Leap-15.1.x86_64-1.15.1.xz PXE_SERVER_IP:/srv/
—tftpboot/image/
scp LimeJeOS-Leap-15.1.x86_64-1.15.1.md5 PXE_SERVER_IP:/srv/
~tftpboot/image/

b) Copy kernel, initrd and bootoptions used for booting the system via kexec

scp LimeJeOS-Leap—-15.1.x86_64-1.15.1.initrd PXE_SERVER_IP:/
—srv/tftpboot/image/

scp LimeJeOS-Leap-15.1.x86_64-1.15.1.kernel PXE_SERVER_IP:/
—srv/tftpboot/image/

scp LimeJeOS-Leap-15.1.x86_64-1.15.1.config.bootoptions PXE_
—SERVER_IP:/srv/tftpboot/image/

Note: The config.bootoptions file is used together with kexec to boot the previously
dumped image. The information in that file references the root of the dumped image
and can also include any other type of boot options. The file provided with the
KIWI NG built image is by default connected to the image present in the PXE TAR
archive. If other images got deployed the contents of this file must be adapted to
match the correct root reference.

4. Add/Update the kernel command line parameters

Edit your PXE configuration (for example pxelinux.cfg/default) on the PXE
server and add these parameters to the append line, typically looking like this:

append initrd=boot/initrd rd.kiwi.install.pxe rd.kiwi.install.
—image=tftp://192.168.100.16/image/LimeJeOS-Leap—-15.1.x86_64-1.
—15.1.xz

6.3. Build an OEM Expandable Disk Image 85

KIWI NG Documentation, Release 9.20.6

The location of the image is specified as a source URI which can point to any location
supported by the curl command. KIWI NG calls curl to fetch the data from this URL
This also means your image, MDS5 file, system kernel and initrd could be fetched from
any server and doesn’t have to be stored on the PXE_ SERVER.

By default KIWI NG does not use specific curl options or flags. However it is possible
to add custom ones by adding the rd.kiwi.install.pxe.curl_options flag
into the kernel command line. curl options are passed as comma separated values.
Consider the following example:

rd.kiwi.install.pxe.curl_options=—--retry, 3, ——-retry-delay, 3, ——
—speed-1imit, 2048

The above tells KIWI NG to call curl with:

curl —--retry 3 —--retry-delay 3 —-—-speed-limit 2048 —-f <url>

This is specially handy when the deployment infraestructure requires some fine tuned
download behavior. For example, setting retries to be more robust over flaky network
connections.

Note: KIWI NG just replaces commas with spaces and appends it to the curl call.
This is relevant since command line options including commas will always fail.

Note: The initrd and Linux Kernel for pxe boot are always loaded via tftp from the
PXE_SERVER.

4. Create a target disk
Follow the steps above to create a virtual target disk

5. Connect the client to the network and boot QEMU with the target disk attached to the
virtual machine.

$ gemu -boot n -hda target_disk -m 4096

Note: QEMU bridged networking

In order to let gemu connect to the network we recommend to setup a network bridge on
the host system and let gemu connect to it via a custom /etc/qgemu-ifup. For details see
https://en.wikibooks.org/wiki/QEMU/Networking

86 Chapter 6. Building Images

https://en.wikibooks.org/wiki/QEMU/Networking

KIWI NG Documentation, Release 9.20.6

6.4 Build a PXE Root File System Image

Abstract

This page explains how to build a file system image for use with KIWI NG’s PXE boot
infrastructure. It contains:

* how to build a PXE file system image

* how to setup the PXE file system image on the PXE server
* how to run it with QEMU

PXE is a network boot protocol that is shipped with most BIOS implementations. The protocol
sends a DHCP request to get an IP address. When an IP address is assigned, it uses the TFTP
protocol to download a Kernel and boot instructions. Contrary to other images built with KIWI
NG, a PXE image consists of separate boot, kernel and root filesystem images, since those
images need to be made available in different locations on the PXE boot server.

A root filesystem image which can be deployed via KIWI NG’s PXE netboot infrastructure
represents the system rootfs in a linux filesystem. A user could loop mount the image and
access the contents of the root filesystem. The image does not contain any information about
the system disk its partitions or the bootloader setup. All of these information is provided by
a client configuration file on the PXE server which controlls how the root filesystem image
should be deployed.

Many different deployment strategies are possible, e.g root over NBD (network block device),
AoE (ATA over Ethernet), or NFS for diskless and diskfull clients. This particular example
shows how to build an overlayfs-based union system based on openSUSE Leap for a diskless
client which receives the squashfs compressed root file system image in a ramdisk overlayed
via overlayfs and writes new data into another ramdisk on the same system. As diskless client,
a QEMU virtual machine is used.

Things to know before

* To use the image, all image parts need to be copied to the PXE boot server. If you have
not set up such a server, refer to Serting Up a Network Boot Server for instructions.

* The following example assumes you will create the PXE image on the PXE boot server
itself (if not, use scp to copy the files on the remote host).

* To let QEMU connect to the network, we recommend to setup a network bridge on the
host system and let QEMU connect to it via a custom /etc/gemu—1fup. For details,
see https://en.wikibooks.org/wiki/QEMU/Networking

* The PXE root filesystem image approach is considered to be a legacy setup. The required
netboot initrd code will be maintained outside of the KIWI NG appliance builder code
base. If possible, we recommend to switch to the OEM disk image deployment via PXE.

1. Make sure you have checked out the example image descriptions, see Example Appliance
Descriptions.

6.4. Build a PXE Root File System Image 87

https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/ATA_over_Ethernet
https://en.wikibooks.org/wiki/QEMU/Networking

KIWI NG Documentation, Release 9.20.6

2. Build the image with KIWI NG:

$ sudo kiwi-ng —--type pxe system build \

——description kiwi-descriptions/suse/x86_64/suse-leap-15.1-
—~Je0S \

——target-dir /tmp/mypxe-result

3. Change into the build directory:

$ cd /tmp/mypxe-result

4. Copy the initrd and the kernel to /srv/tftpboot /boot:

$ cp x.initrd.xz /srv/tftpboot/boot/initrd
$ cp *.kernel /srv/tftpboot/boot/linux

5. Copy the system image and its MDS5 sum to /srv/t ftpboot/image:

$ cp LimeJeOS-Leap-15.1.x86_64-1.15.1/srv/tftpboot/image
$ cp LimeJeOS-Leap—-15.1.x86_64-1.15.1.md5 /srv/tftpboot/image

6. Adjust the PXE configuration file. The configuration file controls which kernel and
initrd is loaded and which kernel parameters are set. A template has been installed at
/srv/tftpboot/pxelinux.cfg/default from the kiwi-pxeboot package.
The minimal configuration required to boot the example image looks like to following:

DEFAULT KIWI-Boot

LABEL KIWI-Boot
kernel boot/linux
append initrd=boot/initrd
IPAPPEND 2

Additional configuration files can be found at :ref: pxe_client_
—~config’.

7. Create the image client configuration file:

$ vi /srv/tftpboot/KIWI/config.default

IMAGE=/dev/raml; LimeJeOS—-Leap-15.1.x86_64;1.15.1;192.168.100.2;
4096
UNTONFS_CONFIG=/dev/ram2, /dev/raml, overlay

All PXE boot based deployment methods are controlled by a client configuration file.
The above configuration tells the client where to find the image and how to activate it. In
this case the image will be deployed into a ramdisk (ram1) and overlay mounted such that
all write operations will land in another ramdisk (ram?2). KIWI NG supports a variety of
different deployment strategies based on the rootfs image created beforehand. For details,
refer to PXE Client Setup Configuration

88

Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

8. Connect the client to the network and boot. This can also be done in a virtualized envi-
ronment using QEMU as follows:

$ gemu -boot n -m 4096

6.5 Build a Docker Container Image

Abstract

This page explains how to build a Docker base image. It contains
* basic configuration explanation

* how to build a Docker image

e how to run it with the Docker daemon

KIWI NG is capable of building native Docker images, from scratch and derived ones. KIWI
NG Docker images are considered to be native since the KIWI NG tarball image is ready to be
loaded to a Docker daemon, including common container configurations.

The Docker configuration metadata is provided to KIWI NG as part of the XML description file
using the <containerconfig> tag. The following configuration metadata can be specified:

containerconfig attributes:
* name: Specifies the repository name of the Docker image.
* tag: Sets the tag of the Docker image.
* maintainer: Specifies the author field of the container.

* user: Sets the user name or user id (UID) to be used when running ent rypoint and
subcommand. Equivalent of the USER directive of a Docker file.

* workingdir: Sets the working directory to be used when running cmd and
entrypoint. Equivalent of the WORKD IR directive of a Docker file.

containerconfig child tags:

* subcommand: Provides the default execution parameters of the container. Equivalent
of the CMD directive of a Docker file.

* labels: Adds custom metadata to an image using key-value pairs. Equivalent to one
or more LABEL directives of a Docker file.

* expose: Informs at which ports is the container listening at runtime. Equivalent to one
or more EXPOSE directives of a Docker file.

* environment: Sets an environment values using key-value pairs. Equivalent to one or
more the env directives of a Docker file.

6.5. Build a Docker Container Image 89

https://docs.python.org/3/library/cmd.html#module-cmd

KIWI NG Documentation, Release 9.20.6

* entrypoint: Sets the command that the container will run, it can include parameters.

Equivalent of the ENTRYPOINT directive of a Docker file.

* volumes: Create mountpoints with the given name and mark it to hold external volumes

from the host or from other containers. Equivalent to one or more VOLUME directives of
a Docker file.

Other Docker file directives such as RUN, COPY or ADD, can be mapped to KIWI NG by using
the config.sh script file to run bash commands or the overlay tree to include extra files.

The following example shows how to build a Docker base image based on openSUSE Leap:

1.

Make sure you have checked out the example image descriptions, see Example Appliance
Descriptions.

Include the Virtualization/containers repository to your list:

$ zypper addrepo http://download.opensuse.org/repositories/
—~Virtualization:/containers/<DIST> container—-tools

where the placeholder <DIST> is the preferred distribution.

. Install umoci and skopeo tools

$ zypper in umoci skopeo

Build the image with KIWI NG:

$ sudo kiwi-ng —--type docker system build \

——description kiwi-descriptions/suse/x86_64/suse—tumbleweed—
—docker \

-—-target-dir /tmp/myimage

. Test the Docker image.

First load the new image

$ docker load —-i openSUSE-Tumbleweed-container-image.x86_64-1.0.
—4.docker.tar.xz

then run the loaded image:

$ docker run —-it opensuse:42.2 /bin/bash

90

Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

6.6 Build a WSL Container Image

Abstract

This page explains how to build a WSL/Appx container image. WSL stands for Windows
Subsystem Linux and is a zip based container format consumable by Windows 10 with en-
abled WSL functionality.

KIWI NG is capable of building WSL images using the appx utility. Make sure you have
installed a package that provides this command on your build host.

Once the build host has the appx installed, the following image type setup is required in the
XML description config.xml:

<type image="appx" metadata_path="/meta/data"/>

The /meta/data path specifies a path that provides additional information required for the
WSL-DistroLauncher. This component consists out of a Windows(exe) executable file
and an AppxManifest .xml file which references other files like icons and resource config-
urations for the startup of the container under Windows.

Note: /meta/data

Except for the root filesystem tarball KIWI NG is not responsible for providing the meta data
required for the WSL-DistroLauncher. Itis expected that the given metadata path contains
all the needed information. Typically this information is delivered in a package provided by the
Distribution and installed on the build host

6.6.1 Setup of the WSL-DistroLauncher

The contents of the AppxManifest.xml will be changed by KIWI NG if a
containerconfig section is provided in the XML description. In the context of a WSL
image the following container configuration parameters are taken into account:

<containerconfig name="my-wsl-container">
<history
created_by="Organisation"
author="Name"
application_id="AppIdentification"
package_version="https://docs.microsoft.com/en-us/windows/
—uwp/publish/package-version—-numbering"
launcher="WSL-DistroLauncher-exe-file"
>Container Description Text</history>
</containerconfig>

6.6. Build a WSL Container Image 91

KIWI NG Documentation, Release 9.20.6

All information provided here including the entire section is optional. If not provided the
existing AppxManifest .xml stays untouched.

created_by Provides the name of a publisher organisation. An appx container needs to be
signed off with a digital signature. If the image is build in the Open Build Service (OBS)
this happens automatically. Outside of OBS one needs to make sure the given publisher
organisation name matches the certificate used for signing.

author Provides the name of the author and maintainer of this container

application_id Provides an ID name for the container. The name must start with a letter and
only allows alphanumeric characters. KIWI NG will not validate the given name string
because there is no common criteria between the container architectures. KIWI NG just
accepts any text.

package_version Provides the version identification for the container. KIWI NG validates this
against the Microsoft Package Version Numbering rules.

launcher Provides the binary file name of the launcher . exe file.

Warning: There is no validation by KIWI NG if the contents of AppxManifest .xml
are valid or complete to run the container. Users will find out at call time, not before

The following example shows how to build a WSL image based on openSUSE TW:

1. Make sure you have checked out the example image descriptions, see Example Appliance
Descriptions.

2. Include the Virtualization/WSL repository to your list:

$ zypper addrepo http://download.opensuse.org/repositories/
—Virtualization:/WSL/<DIST> WSL

where the placeholder <DI ST> is the preferred distribution.

3. Install fb-util-for—appx utility and a package that provides the
WSL-DistroLauncher metadata. See the above note about /meta/data

$ zypper in fb-util-for-appx DISTRO_APPX_METADATA_PACKAGE

Note: If you are building in the Open Build Service make sure to add the packages from
the zypper call above to your project config via osc meta —e prjconf and a line
of the form support: PACKAGE_NAME for each package that needs to be installed
on the Open Build Service worker that runs the KIWI NG build process.

4. Setup the image type:

Edit the XML description file: kiwi-descriptions/suse/x86_64/
suse-tumbleweed-JeOS/config.xml and add the following type and con-
tainerconfig:

92 Chapter 6. Building Images

https://docs.microsoft.com/en-us/windows/uwp/publish/package-version-numbering

KIWI NG Documentation, Release 9.20.6

<type image="appx" metadata_path="/meta/data">
<containerconfig name="Tumbleweed">
<history
created_by="SUSE"
author="KIWI-Team"
application_id="tumbleweed"
package_version="2003.12.0.0"
launcher="openSUSE-Tumbleweed.exe"
>TW JeOS text based</history>
</containerconfig>
</type>

Warning: If the configured metadata path does not exist the build will fail. Further-
more there is no validation by KIWI NG that the contents of the metadata path are
valid or complete with respect to the requirements of the WSL—-DistroLauncher

5. Build the image with KIWI NG:

$ sudo kiwi-ng --type appx system build \

——-description kiwi-descriptions/suse/x86_64/suse-tumbleweed-
—Je0S \

—-—target—-dir /tmp/myimage

6.6.2 Testing the WSL image

For testing the image a Windows 10 system is required. As a first step the optional feature
named Microsoft-Windows-Subsystem-Linux must be enabled. For further details
on how to setup the Windows machine see the following documentation: Windows Subsystem
for Linux

6.7 Building in a Self-Contained Environment

Note: Abstract

Users building images with KIWI NG face problems if they want to build an image matching
one of the following criteria:

* build should happen as non root user.

* build should happen on a host system distribution for which no KIWI NG packages
exists.

* build happens on an incompatible host system distribution compared to the target image
distribution. For example the host system rpm database is incompatible with the image

6.7. Building in a Self-Contained Environment 93

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

KIWI NG Documentation, Release 9.20.6

rpm database and a dump/reload cycle is not possible between the two versions. Ideally
the host system distribution is the same as the target image distribution.

This document describes how to perform the build process in a Docker container using the Dice
containment build system written for KIWI NG in order to address the issues listed above.

The changes on the machine to become a build host will be reduced to the requirements of Dice
and Docker.

6.7.1 Requirements

The following components needs to be installed on the build system:

Dice - a containment build system for KIWI NG.
Docker - a container framework based on the Linux container support in the kernel.
Docker Image - a docker build container for KIWI NG.

optionally Vagrant - a framework to run, provision and control virtual machines and
container instances. Vagrant has a very nice interface to provision a machine prior to
running the actual build. It also supports docker as a provider which makes it a perfect
fit for complex provisioning tasks in combination with the Docker container system.

optionally libvirt - Toolkit to interact with the virtualization capabilities of Linux. In
combination with vagrant, libvirt can be used as provider for provision and control full
virtual instances running via gemu. As docker shares the host system kernel and thus any
device, because KIWI NG needs to use privileged docker containers for building images,
the more secure but less performant solution is to use virtual machines to run the KIWI
NG build.

6.7.2 Installing and Setting up Dice

The Dice packages and sources are available at the following locations:

Build service project: http://download.opensuse.org/repositories/Virtualization:
/Appliances:/ContainerBuilder

Sources: https://github.com/OSInside/dice

$ sudo zypper in ruby[VERSION]-rubygem-dice

94

Chapter 6. Building Images

http://download.opensuse.org/repositories/Virtualization:/Appliances:/ContainerBuilder
http://download.opensuse.org/repositories/Virtualization:/Appliances:/ContainerBuilder
https://github.com/OSInside/dice

KIWI NG Documentation, Release 9.20.6

6.7.3 Installing and Setting up Docker

Docker packages are usually available with the used distribution.

$ sudo zypper in docker

Make sure that the user, who is intended to build images, is a member of the docker group.
Run the following command:

S sudo useradd -G docker <builduser>

It is required to logout and login again to let this change become active.

Once this is done you need to setup the Docker storage backend. By default Docker uses the
device mapper to manage the storage for the containers it starts. Unfortunately, this does not
work if the container is supposed to build images because it runs into conflicts with tools like
kpartx which itself maps devices using the device mapper.

Fortunately, there is a solution for Docker which allows us to use Btrfs as the storage backend.
The following is only required if your host system root filesystem is not btrfs:

sudo gemu-img create /var/lib/docker-storage.btrfs 20g
sudo mkfs.btrfs /var/lib/docker—-storage.btrfs

sudo mkdir -p /var/lib/docker

sudo mount /var/lib/docker-storage.btrfs /var/lib/docker

v »n 0 W

$ sudo vi /etc/fstab
/var/lib/docker—-storage.btrfs /var/lib/docker btrfs defaults 0 0
$ sudo vi /etc/sysconfig/docker

DOCKER_OPTS="-s btrfs"

Finally start the docker service:

$ sudo systemctl restart docker

6.7.4 Installing and Setting up the Build Container

In order to build in a contained environment Docker has to start a privileged system con-
tainer. Such a container must be imported before Docker can use it. The build container
is provided to you as a service and build with KIWI NG in the project at http://download.
opensuse.org/repositories/Virtualization:/Appliances:/Images. The result image is pushed to
https://hub.docker.com/r/opensuse/dice.

When building with Dice, the container will be automatically fetched from the docker registry.
However this step can also be done prior to calling dice as follows:

6.7. Building in a Self-Contained Environment 95

http://download.opensuse.org/repositories/Virtualization:/Appliances:/Images
http://download.opensuse.org/repositories/Virtualization:/Appliances:/Images
https://hub.docker.com/r/opensuse/dice

KIWI NG Documentation, Release 9.20.6

$ docker pull opensuse/dice:latest

Note: Optional step

If a custom or newer version of the Build Container should be used, it is required to update the
registry. This is because Dice always fetches the latest version of the Build Container from the
registry.

1. Download the .tar.bz2 file which starts with Docker—Tumbleweed

$ wget http://download.opensuse.org/repositories/Virtualization:/
—Appliances:/Images/images/Docker-Tumbleweed.XXXXXXX.docker.tar.xz

2. Import the downloaded tarball with the command docker:

S docker load -i Docker—-Tumbleweed.XXXXXXX.docker.tar

3. Tag the container and push back to the registry

$ docker push opensuse/dice:latest

6.7.5 Installing and Setting up Vagrant

Note: Optional step

By default Dice shares the KIWI NG image description directory with the Docker instance.
If more data from the host should be shared with the Docker instance we recommend to use
Vagrant for this provision tasks.

Installing Vagrant is well documented at https://www.vagrantup.com/docs/installation/index.
html

Access to a machine started by Vagrant is done through SSH exclusively. Because of that an
initial key setup is required in the Docker image vagrant should start. The KIWI NG Docker
image includes the public key of the Vagrant key pair and thus allows access. It is important
to understand that the private Vagrant key is not a secure key because the private key is not
protected.

However, this is not a problem because Vagrant creates a new key pair for each machine it starts.
In order to allow Vagrant the initial access and the creation of a new key pair, it’s required to
provide access to the insecure Vagrant private key. The following commands should not be
executed as root, but as the intended user to build images.

$ mkdir -p ~/.dice/key
$ cp —a /usr/share/doc/packages/ruby*-rubygem-dice/key ~/.dice/key

96 Chapter 6. Building Images

https://www.vagrantup.com/docs/installation/index.html
https://www.vagrantup.com/docs/installation/index.html

KIWI NG Documentation, Release 9.20.6

6.7.6 Configuring Dice

If you build in a contained environment, there is no need to have KIWI NG installed on the
host system. KIWI NG is part of the container and is only called there. However, a KIWI NG
image description and some metadata defining how to run the container are required as input
data.

6.7.7 Selecting a Template

If you don’t have a KIWI NG description select one from the templates provided at the GitHub
project hosting example appliance descriptions.

$ git clone https://github.com/OSInside/kiwi-descriptions

The descriptions hosted here also provides a default Dicefile as part of each image descrip-
tion.

6.7.8 The Dicefile

The Dicefile is the configuration file for the dice buildsystem backend. All it needs to know for
a plain docker based build process is the selection of the buildhost to be a Docker container.
The Dicefile’s found in the above mentioned appliance descriptions look all like the following:

.configure do |config]
config.buildhost = :DOCKER
end

6.7.9 Building with Dice

If you have choosen to just use the default Dice configuration as provided with the example
appliance descriptions, the following example command will build the image:

$ cd <git-clone-result-kiwi-descriptions>

$ dice build suse/x86_64/suse-leap-15.1-Je0S
$ dice status suse/x86_64/suse-leap-15.1-Je0S

6.7. Building in a Self-Contained Environment 97

KIWI NG Documentation, Release 9.20.6

6.7.10 Buildsystem Backends

Dice currently supports three build system backends:

1. Host buildsystem - Dice builds on the host like if you would call KIWI NG on the host
directly.

2. Vagrant Buildsystem - Dice uses Vagrant to run a virtual system which could also be a
container and build the image on this machine.

3. Docker buildsystem - Dice uses Docker directly to run the build in a container

The use of the Docker buildsystem has been already explained in the above chapters. The
following sections explains the pros and cons of the other two available Buildsystem Backends.

6.7.11 Building with the Host Buildsystem

Using the Host Buildsystem basically tells Dice to ssh into the specified machine with the
specified user and run KIWI NG. This is also the information which needs to be provided in
a Dicefile. Using the Host Buildsystem is recommended if there are dedicated build machines
available to take over KIWI NG build jobs.

6.7.12 The Dicefile

.configure do |config]

config.buildhost = "full-qualified-dns—-name-or—-ip-address"
config.ssh_user = "vagrant"
end

After these changes a dice build command will make use of the Host Buildsystem and
starts the KIWI NG build process there.

Note: Provisioning of the Host Buildsystem

There is no infrastructure in place which manages the machine specified as config.buildhost.
This means it is currently in the responsibility of the user to make sure the specified machine
exists and is accessible via the configured user. For the future we plan to implement a Public
Cloud Buildsystem which then will allow provisioning and management of a public cloud
instance e.g on Amazon EC2 in order to run the build. However we are not there yet.

98 Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

6.7.13 Building with the Vagrant Buildsystem

Using the Vagrant Buildsystem should be considered if one or both of the following use cases
applies:
1. The build task requires additional content or logic before the build can start. Vagrant

serves as provisioning system to share data from the host with the guest containers.

2. The build task should run in a completely isolated virtual machine environment. Vagrant
in combination with the libvirt provider serves as both; The tool to interact with the vir-
tualization capabilities to run and manage virtual machine instances and as provisioning
system to share data from the host with the virtual machines.

6.7.14 The Dicefile

The Dicefile in the context of Vagrant needs to know the user name to access the instance. The
reason for this is, in Vagrant access to the system is handled over SSH.

.configure do |config]|
config.ssh_user = "vagrant"
end

6.7.15 The Vagrant setup for the Docker Provider

The following is an example for the first use case and describes how to configure Dice to use
Docker in combination with Vagrant as provisioning system.

6.7.16 The Vagrantfile

The existence of a Vagrantfile tells Dice to use Vagrant as Buildsystem. Once you call dice to
build the image it will call vagrant to bring up the container. In order to allow this, we have
to tell Vagrant to use Docker for this task and provide parameters on how to run the container.
At the same place the Dicefile exists we create the Vagrantfile with the following content:

— non
.configure () do |config]|
config.vm.provider "docker" do |d]
d.image = "opensuse/dice:latest"
d.create_args = ["-privileged=true", "-i", "-t"]
start the sshd in foreground to keep the container in running,
—state
d.cmd = ["/usr/sbin/sshd", "-D"]
d.has_ssh = true
end
end

6.7. Building in a Self-Contained Environment 929

KIWI NG Documentation, Release 9.20.6

After these changes a dice build command will make use of the Vagrant build system and
offers a nice way to provision the Docker container instances prior to the actual KIWI NG
build process. Vagrant will take over the task to run and manage the docker container via the
docker tool chain.

6.7.17 The Vagrant setup for the libvirt Provider

The following sections are an example for the second use case and describes how to configure
Dice to use libvirt in combination with Vagrant as provisioning and virtualization system.

6.7.18 The Vagrant Build Box

Apart from the Docker build container the Dice infrastructure also provides a virtual machine
image also known as vagrant box which contains a system ready to build images with KIWI
NG.

Download the Vagrant build box which starts with Vagrant-Libvirt-Tumbleweed from
the Open BuildService and add the box to vagrant as follows:

$ wget http://download.opensuse.org/repositories/Virtualization:/
—Appliances:/Images/images/Vagrant-Libvirt—-Tumbleweed.XXXXXXX.
—vagrant.libvirt.box

$ vagrant box add —--provider libvirt —--name kiwi-build-box Vagrant-
~Libvirt-Tumbleweed.XXXXXXX.vagrant.libvirt.box

$ export VAGRANT_DEFAULT_PROVIDER=libvirt

The command vagrant box list must list the box with name kiwi-build-box as
referenced in the following Vagrantfile setup.

6.7.19 The Vagrantfile

= nom

.configure () do |config|
config.vm.box = "kiwi-build-box"

config.vm.provider "libvirt" do |1v|
lv.memory = "1024"
end
end

After these changes a dice build command will make use of the Vagrant build system and
offers a nice way to provision fully isolated gemu instances via libvirt prior to the actual KIWI
NG build process. Vagrant will take over the task to run and manage the virtual machines via
the 1ibvirt tool chain.

100 Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

6.8 Building Images with Profiles

KIWI NG supports so-called profiles inside the XML image description. Profiles act as names-
paces for additional settings to be applied on top of the defaults. For further details, see /mage
Profiles.

6.8.1 Local Builds

To execute local KIWI NG builds with a specific, selected profile, add the command line flag
——profile=$PROFILE_NAME:

$ sudo kiwi-ng —--type iso system build \

——-profile=workstation \

——description kiwi-descriptions/suse/x86_64/suse-leap—-15.1-
—Je0sS \

—-—target—-dir /tmp/myimage

Consult the manual page of kiwi for further details: SYNOPSIS.

6.8.2 Building with the Open Build Service

The Open Build Service (OBS) support profiles via the multibuild feature. An example project
using this feature is the openSUSE-Tumbleweed-JeOS image.

To enable and use the profiles, follow these steps:

1. Add the following XML comment to your config.xml:

<!-- OBS-Profiles: (@BUILD_FLAVOR@ ——>

It must be added before the opening 

2. Add afile _multibuild into your package’s repository with the following contents:

<multibuild>
<flavor>profile_1l</flavor>
<flavor>profile_2</flavor>
</multibuild>

Add a line <flavor>$PROFILE</flavor> for each profile that you want OBS to
build.

6.8. Building Images with Profiles 101

https://openbuildservice.org/help/manuals/obs-reference-guide/cha.obs.multibuild.html
https://build.opensuse.org/package/show/openSUSE:Factory/openSUSE-Tumbleweed-JeOS

KIWI NG Documentation, Release 9.20.6

Note, by default, OBS excludes the build without any profile enabled.

Running a build of a multibuild enabled repository via osc can be achieved via the —M
SPROFILE flag:

$ osc build -M $SPROFILE

6.9 Building in the Open Build Service

Note: Abstract

This document gives a brief overview how to build images with KIWI NG in version 9.20.6
inside of the Open Build Service. A tutorial on the Open Buildservice itself can be found here:
https://en.opensuse.org/openSUSE:Build_Service_Tutorial

The next generation KIWI NG is fully integrated with the Open Build Service. In order to
start it’s best to checkout one of the integration test image build projects from the base Testing
project Virtualization:Appliances:Images:Testing_ $ARCH:S$DISTRO at:

https://build.opensuse.org

For example the test images for SUSE on x86 can be found here.

6.9.1 Advantages of using the Open Build Service (OBS)

The Open Build Service offers multiple advantages over running KIWI NG locally:
* OBS will host the latest successful build for you without having to setup a server yourself.

* As KIWI NG is fully integrated into OBS, OBS will automatically rebuild your images if
one of the included packages or one of its dependencies or KIWI NG itself get updated.

* The builds will no longer have to be executed on your own machine, but will run on
OBS, thereby saving you resources. Nevertheless, if a build fails, you get a notification
via email (if enabled in your user’s preferences).

6.9.2 Differences Between Building Locally and on OBS

Note, there is a number of differences when building images with KIWI NG using the Open
Build Service. Your image that build locally just fine, might not build without modifications.

The notable differences to running KIWI NG locally include:

* OBS will pick the KIWI NG package from the repositories configured in your project,
which will most likely not be the same version that you are running locally. This is
especially relevant when building images for older versions like SUSE Linux Enterprise.
Therefore, include the custom appliances repository as described in the following section:
Recommendations.

102 Chapter 6. Building Images

https://en.opensuse.org/openSUSE:Build_Service_Tutorial
https://build.opensuse.org
https://build.opensuse.org/project/show/Virtualization:Appliances:Images:Testing_x86:suse

KIWI NG Documentation, Release 9.20.6

* When KIWI NG runs on OBS, OBS will extract the list of packages from config.xml
and use it to create a build root. In contrast to a local build (where your distributions
package manager will resolve the dependencies and install the packages), OBS will not
build your image if there are multiple packages that could be chosen to satisfy the depen-
dencies of your packages'. This shows errors like this:

unresolvable: have choice for SOMEPACKAGE: SOMEPAKAGE_1
—~SOMEPACKAGE_2

This can be solved by explicitly specifying one of the two packages in the project con-
figuration via the following setting:

Prefer: SOMEPACKAGE 1

Place the above line into the project configuration, which can be accessed either via the
web interface (click on the tab Project Config on your project’s main page) or via
osc meta -e prjconf.

Warning: We strongly encourage you to remove your repositories from config.
xml and move them to the repository configuration in your project’s settings. This
usually prevents the issue of having the choice for multiple package version and re-
sults in a much smoother experience when using OBS.

* By default, OBS builds only a single build type and the default profile. If your appli-
ance uses multiple build types, put each build type into a profile, as OBS cannot handle
multiple build types.

There are two options to build multiple profiles on OBS:

1. Use the 

2. Use the multibuild feature.

The first option is simpler to use, but has the disadvantage that your appliances are built
sequentially. The multibuild feature allows to build each profile as a single package,
thereby enabling parallel execution, but requires an additional _multibuild file. For
the above example config.xml would have to be adapted as follows:

! This is a design decision made by OBS: as it’s purpose is to build packages in a reproducible fashion it cannot
make a decision which package to choose from multiple available ones. A package manager build for end-users
on the other hand must make an a choice, as it would be otherwise hardly usable.

6.9. Building in the Open Build Service 103

https://openbuildservice.org/help/manuals/obs-reference-guide/cha.obs.multibuild.html

KIWI NG Documentation, Release 9.20.6

<?xml version="1.0" encoding="utf-8"?>
<!-- OBS-Profiles: (@BUILD_FLAVOR@ ——>

<image schemaversion="7.1" name="openSUSE-Leap-15.1">

<!-- image description with the profiles foo_profile and bar_
—profile
</image>

The file _multibuild would have the following contents:

<multibuild>
<flavor>foo_profile</flavor>
<flavor>bar_profile</flavor>
</multibuild>

* Subfolders in OBS projects are ignored by default by osc and must be explicitly added
via osc add $FOLDER’. Bear that in mind when adding the overlay files inside the
root / directory to your project.

* OBS ignores file permissions. Therefore config. sh and images. sh will always be
executed through BASH (see also: User Defined Scripts).

6.9.3 Recommendations

Working with OBS

Although OBS is an online service, it is not necessary to test every change by uploading it.
OBS will use the same process as osc build does, so if your image builds locally via osc
build it should also build online on OBS.

Repository Configuration

When setting up the project, enable the images repository: the images repository’s check-
box can be found at the bottom of the selection screen that appears when clicking Add from
a Distributioninthe Repositories tab. Or specify it manually in the project config-
uration (it can be accessed via osc meta -e prij):

<repository name="images">
<arch>x86_64</arch>
</repository>

Furthermore, OBS requires additional repositories from which it obtains your dependent pack-
ages. These repositories can be provided in two ways:

2 osc compresses added folders into a cpio archive and decompresses it before running your builds. The only

downside of this is, that the contents of your overlay is not conveniently visible via the web interface.

104 Chapter 6. Building Images

https://en.wikipedia.org/wiki/Cpio

KIWI NG Documentation, Release 9.20.6

1. Add the repositories to the project configuration on OBS and omit them from config.
xml. Provide only the following repository inside the image description:

<repository type="rpm-md">
<source path="obsrepositories:/"/>
</repository>

This instructs OBS to inject the repositories from your project into your appliance.

Additional repositories can be added by invoking osc meta -e prj and adding a
line of the following form as a child of <repository name="images">:

<path project="$0BS_PROJECT" repository="$REPOSITORY_NAME"/>

The order in which you add repositories matters: if a package is present in multiple
repositories, then it is taken from the first repository. The last repository is subject to
path expansion: its repository paths are included as well.

Don’t forget to add the repository fromthe Virtualization:Appliances:Builder
project, providing the latest stable version of KIWI NG (which you are very likely using
for your local builds).

The following example repository configuration® adds the repositories from the
Virtualization:Appliances:Builder project and those from the latest snap-
shot of openSUSE Tumbleweed:

<project name="Virtualization:Appliances:Images:openSUSE-
—Tumbleweed">
<title>JeO0S for Tumbleweed </title>
<description>Host JeOS images for Tumbleweed</description>
<repository name="images">
<path project="Virtualization:Appliances:Builder" |,
—repository="Factory"/>
<path project="openSUSE:Factory" repository="snapshot"/>
<arch>x86_64</arch>
</repository>
</project>

The above can be simplified further using the path expansion of the last repository to:

<project name="Virtualization:Appliances:Images:openSUSE-
—Tumbleweed">
<title>Je0S for Tumbleweed </title>
<description>Host JeOS images for Tumbleweed</description>
<repository name="images">
<path project="Virtualization:Appliances:Builder" |,
wrepository="Factory"/>
<arch>x86_64</arch>
</repository>
</project>

3 Taken from the project Virtualization: Appliances:Images:openSUSE-Tumbleweed

6.9. Building in the Open Build Service 105

https://build.opensuse.org/project/show/Virtualization:Appliances:Images:openSUSE-Tumbleweed

KIWI NG Documentation, Release 9.20.6

Now Virtualization:Appliances:Builder is the last repository, which’
repositories are included into the search path. As openSUSE:Factory/snapshot
is among these, it can be omitted from the repository list.

2. Keep the repositories in your config.xml configuration file. If you have installed the
latest stable KIWI NG as described in Installation then you should add the following
repository to your projects configuration (accessible via osc meta —e prjconf),
so that OBS will pick the latest stable KIWI NG version too:

<repository name="images">

<path project="Virtualization:Appliances:Builder" repository="
~SDISTRO" />

<arch>x86_64</arch>
</repository>

Replace $DISTRO with the appropriate name for the distribution that you are currently
building and optionally adjust the architecture.

We recommend to use the first method, as it integrates better into OBS. Note that your image
description will then no longer build outside of OBS though. If building locally is required, use
the second method.

Warning: Adding the repositories to project’s configuration makes it impossible to build
images for different distributions from the same project.

Since the repositories are added for every package in your project, all your image builds
will share the same repositories, thereby resulting in conflicts for different distributions.

We recommend to create a separate project for each distribution. If that is impossible, you
can keep all your repositories (including Virtualization:Appliances:Builder)
in config.xml. That however usually requires a large number of workarounds via
Prefer: settings in the project configuration and is thus not recommended.

Project Configuration

The Open Build Service will by default create the same output file as KIWI NG when run
locally, but with a custom filename ending (that is unfortunately unpredictable). This has the
consequence that the download URL of your image will change with every rebuild (and thus
break automated scripts). OBS can create symbolic links with static names to the latest build
by adding the following line to the project configuration:

Repotype: staticlinks

If build Vagrant images (see /mage Description for Vagrant) add the repository-type vagrant.
OBS creates a boxes/ subdirectory in your download repositories, which contains JSON files
for Vagrant®.

4 Vagrant uses these JSON files for automatic updates of your Vagrant boxes.

106 Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

If you have added your repositories to config.xml, you probably see errors of the following
type:

unresolvable: have choice for SOMEPACKAGE: SOMEPAKAGE_1 SOMEPACKAGE_
2

Instead of starting from scratch and manually adding Prefer: statements to the project
configuration, we recommend to copy the current project configuration of the testing
project Virtualization:Appliances:Images:Testing $ARCH:S$DISTRO into
your own project. It provides a good starting point and can be adapted to your OBS project.

6.10 Image Types

ISO Hybrid Live Image An iso image which can be dumped on a CD/DVD or USB stick and
boots off from this media without interfering with other system storage components. A
useful pocket system for testing and demo and debugging purposes.

Virtual Disk Image An image representing the system disk, useful for cloud frameworks like
Amazon EC2, Google Compute Engine or Microsoft Azure.

OEM Expandable Disk Image An image representing an expandable system disk. This
means after deployment the system can resize itself to the new disk geometry. The resize
operation is configurable as part of the image description and an installation image for
CD/DVD, USB stick and Network deployment can be created in addition.

PXE root File System Image A root filesystem image which can be deployed via KIWI NG’s
PXE netboot infrastructure. A client configuration file on the pxe server controls how
the root filesystem image should be deployed. Many different deployment strategies are
possible, e.g root over NBD, AoE or NFS for diskless and diskfull clients.

Docker Container Image An archive image suitable for the docker container engine. The
image can be loaded via the docker load command and works within the scope of
the container engine

6.11 Supported Distributions

KIWI NG can build images for the distributions which are equal or newer compared to the
table below. For anything older use the legacy KIWI NG version v7.x For more details on the
legacy KIWI NG, see: Legacy KIWI vs. KIWI Next Generation (KIWI NG)

The most compatible environment is provided if the build host is of the same distribution than
the target image. This always applies for the Open Build Service (OBS). In other cases please
check the table if your target combination is known to be supported.

6.10. Image Types 107

KIWI NG Documentation, Release 9.20.6

Host / Im- | Cen- | Fe- openSUSE | RHEL SLE | SLE | open- Ubuntu
age tOS dora | Leap 15 7 12 15 SUSE 19
7 30 TW

CentOS 7 yes no no yes no no no no

Fedora 30 | untested yes no untestedho no no no

openSUSE | untested note:dnfyes untestecdo yes | no no

Leap 15

RHEL 7 untested no no yes no no no no

SLE 12 no untested untested no yes | no no no

SLE 15 untested note:dnf yes no no yes | untested no

openSUSE | untested note:dnfyes untestecho untested/es no

™W

Ubuntu 19 | no no no no no no no yes
dnf

dnf is the package manager used on Fedora and RHEL and is the successor of yum. When
KIWI NG builds images for this distributions the latest version of dnf is required to be installed
on the host to build the image.

In general, our goal is to support any major distribution with KIWI NG. However for building
images we rely on core tools which are not under our control. Also several design aspects
of distributions like secure boot and working with upstream projects are different and not
influenced by us. There are many side effects that can be annoying especially if the build host
is not of the same distribution vendor than the image target.

6.12 Supported Platforms and Architectures

Images built with KIWI NG are designed for a specific use case. The author of the image
description sets this with the contents in the KIWI NG XML document as well as custom
scripts and services. The following list provides an abstract of the platforms where KIWI NG
built images are productively used:

¢ Amazon EC2

Microsoft Azure

Google Compute Engine

Private Data Centers based on OpenStack

Bare metal deployments e.g Microsoft Azure Large Instance

SAP workloads

The majority of the workloads is based on the x86 architecture. KIWI NG also supports other
architectures, shown in the table below:

108 Chapter 6. Building Images

KIWI NG Documentation, Release 9.20.6

Architecture | Supported
x86_64 yes

ix86 yes note:distro
$390/s390x yes note:distro
arm/aarch64 | yes note:distro
ppc64 no (alpha-phase)

distro

The support status for an architecture depends on the distribution. If the distribution does not
build its packages for the desired architecture, KIWI NG will not be able to build an image for
it

6.12. Supported Platforms and Architectures 109

CHAPTER
SEVEN

COMMAND LINE

Note: This document provides a list of the existing KIWI Next Generation (KIWI NG) com-
mands for version 9.20.6.

7.1 Kiwi-ng

7.1.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng -h | —-help
kiwi-ng [--profile=<name>...]
——type=<build_type>]
——logfile=<filename>]
——debug]
[-—color-output]
image <command> [<args>...]
kiwi-ng [—--debug]
[-—color-output]
result <command> [<args>...]
kiwi-ng [--profile=<name>...]

(
[
(
[

——-shared-cache-dir=<directory>]
——type=<build_type>]
——logfile=<filename>]
——debug]
[-—color-output]

system <command> [<args>...]
kiwi-ng compat <legacy_args>...
kiwi-ng -v | —--version

[
(
[
(

kiwi-ng help

110

KIWI NG Documentation, Release 9.20.6

7.1.2 DESCRIPTION

KIWI NG is an imaging solution that is based on an image XML description. Such a description
is represented by a directory which includes at least one config.xml or . kiwi file and may
as well include other files like scripts or configuration data.

A collection of example image descriptions can be found on the github repository here:
https://github.com/OSInside/kiwi-descriptions. Most of the descriptions provide a so called
JeOS image. JeOS means Just enough Operating System. A JeOS is a small, text only based
image including a predefined remote source setup to allow installation of missing software
components at a later point in time.

KIWI NG operates in two steps. The system build command combines both steps into one to
make it easier to start with KIWI NG. The first step is the preparation step and if that step was
successful, a creation step follows which is able to create different image output types.

In the preparation step, you prepare a directory including the contents of your new filesystem
based on one or more software package source(s) The creation step is based on the result of the
preparation step and uses the contents of the new image root tree to create the output image.

KIWI NG supports the creation of the following image types:
* ISO Live Systems
* Virtual Disk for e.g cloud frameworks
* OEM Expandable Disk for system deployment from ISO or the network
* File system images for deployment in a pxe boot environment

Depending on the image type a variety of different disk formats and architectures are supported.

7.1.3 GLOBAL OPTIONS

--color-output Use Escape Sequences to print different types of information
in colored output. The underlaying terminal has to understand
those escape characters. Error messages appear red, warning
messages yellow and debugging information will be printed
light grey.

--debug Print debug information on the commandline.

--logfile=<filename> Specify log file. the logfile contains detailed information
about the process.

--profile=<name> Select profile to use. The specified profile must be part of the
XML description. The option can be specified multiple times to
allow using a combination of profiles

--shared-cache-dir=<directory> Specify an alternative shared cache directory.
The directory is shared via bind mount between the build host
and image root system and contains information about package
repositories and their cache and meta data. The default location
is set to /var/cache/kiwi

7.1. kiwi-ng 111

https://github.com/OSInside/kiwi-descriptions

KIWI NG Documentation, Release 9.20.6

--type=<build_type> Select image build type. The specified build type must be
configured as part of the XML description.

--version Show program version

7.1.4 EXAMPLE

$ git clone https://github.com/0OSInside/kiwi-descriptions

$ kiwi —-type vmx system build \

——description kiwi-descriptions/suse/x86_64/suse-leap-15.1-Je0S
=\

-—target-dir /tmp/myimage

7.1.5 COMPATIBILITY

This version of KIWI NG uses a different caller syntax compared to former versions. However
there is a compatibility mode which allows to use a legacy KIWI NG commandline as follows:

$ kiwi compat \
—--build kiwi-descriptions/suse/x86_64/suse-leap-15.1-Je0S \
-—type vmx —-d /tmp/myimage

7.2 kiwi-ng result list

7.2.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng result list -h | —--help
kiwi-ng result list --target-dir=<directory>
kiwi-ng result list help

7.2.2 DESCRIPTION

List build results from a previous build or create command. Please note if you build an image
several times with the same target directory the build result information will be overwritten
each time you build the image. Therefore the build result list is valid for the last build

112 Chapter 7. Command Line

KIWI NG Documentation, Release 9.20.6

7.2.3 OPTIONS

--target-dir=<directory> directory containing the kiwi build results

7.3 kiwi-ng result bundle

7.3.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng result bundle -h | —--help
kiwi-ng result bundle --target-dir=<directory> —--id=<bundle_id> --
—bundle-dir=<directory>
[-—zsync_source=<download_location>]
kiwi-ng result bundle help

7.3.2 DESCRIPTION

Create result bundle from the image build results in the specified target directory. Each result
image will contain the specified bundle identifier as part of its filename. Uncompressed image
files will also become xz compressed and a sha sum will be created from every result image.

7.3.3 OPTIONS

--bundle-dir=<directory> directory containing the bundle results, compressed
versions of image results and their sha sums

--id=<bundle_id> bundle id, could be a free form text and is appended to the
image version information if present as part of the result image
filename

--target-dir=<directory> directory containing the kiwi build results

--zsync_source=<download_location> Specify the download location from
which the bundle file(s) can be fetched from. The information
is effective if zsync is used to sync the bundle.

* The zsync control file is only created for those bundle files
which are marked for compression because in a KIWI NG
build only those are meaningful for a partial binary file
download.

* It is expected that all files from a bundle are placed to the
same download location

7.3. kiwi-ng result bundle 113

KIWI NG Documentation, Release 9.20.6

7.4 kiwi-ng system prepare

7.4.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng system prepare -h | —--help
kiwi-ng system prepare —--description=<directory> —--root=<directory>
[-—allow—existing-root]
[-—clear—-cache]
[-—ignore-repos]
[-—ignore-repos-used-for-build]
[-—set-repo=<source, type,alias,priority, imageinclude, package_
—gpgcheck>]
[-—add-repo=<source, type,alias,priority, imageinclude, package_
—gpgcheck>...]
[-—add-package=<name>...]
[-—add-bootstrap-package=<name>...]
[-—delete-package=<name>...]
[-—signing-key=<key-file>...]
kiwi-ng system prepare help

7.4.2 DESCRIPTION

Create a new image root directory. The prepare step builds a new image root directory from the
specified XML description. The specified root directory is the root directory of the new image
root system. As the root user you can enter this system via chroot as follows:

$ chroot <directory> bash

7.4.3 OPTIONS

--add-bootstrap-package=<name> specify package to install as part of the early
kiwi bootstrap phase. The option can be specified multiple times

--add-package=<name> specify package to add(install). The option can be spec-
ified multiple times

--add-repo=<source,type,alias,priority,imageinclude,package_gpgcheck>
See the kiwi::system::build manual page for further details

--allow-existing-root allow to re-use an existing image root directory

--clear-cache delete repository cache for each of the used repositories before
installing any package. This is useful if an image build should
take and validate the signature of the package from the origi-
nal repository source for any build. Some package managers

114 Chapter 7. Command Line

KIWI NG Documentation, Release 9.20.6

unconditionally trust the contents of the cache, which is ok for
cache data dedicated to one build but in case of kiwi the cache
is shared between multiple image builds on that host for perfor-
mance reasons.

--delete-package=<name> specify package to delete. The option can be specified
multiple times

--description=<directory> Path to the kiwi XML description. Inside of that di-
rectory there must be at least a config.xml of * kiwi XML de-
scription.

--ignore-repos Ignore all repository configurations from the XML description.
Using that option is usally done with a sequence of —add-repo
options otherwise there are no repositories available for the im-
age build which would lead to an error.

--ignore-repos-used-for-build Works the same way as —ignore-repos except that
repository configurations which has the imageonly attribute set
to true will not be ignored.

--root=<directory> Path to create the new root system.

--set-repo=<source,type,alias,priority,imageinclude,package_gpgcheck> See
the kiwi::system::build manual page for further details

--signing-key=<key-file> set the key file to be trusted and imported into the pack-
age manager database before performing any opertaion. This is
useful if an image build should take and validate repository and
package signatures during build time. This option can be speci-
fied multiple times.

7.5 Kiwi-ng system update

7.5.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng system update -h | —--help

kiwi-ng system update --root=<directory>
[-—add-package=<name>...]
[-—delete-package=<name>...]

kiwi-ng system update help

7.5. kiwi-ng system update

115

KIWI NG Documentation, Release 9.20.6

7.5.2 DESCRIPTION

Update a previously prepare image root tree. The update command refreshes the contents of the
root directory with potentially new versions of the packages according to the repository setup
of the image XML description. In addition the update command also allows to add or remove
packages from the image root tree

7.5.3 OPTIONS

--add-package=<name> specify package to add(install). The option can be spec-
ified multiple times

--delete-package=<name> specify package to delete. The option can be specified
multiple times

--root=<directory> Path to the root directory of the image.

7.6 kiwi-ng system build

7.6.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng system build -h | —--help
kiwi-ng system build —--description=<directory> —--target-dir=
—<directory>

[-—allow—-existing-root]

[-—clear—-cache]

[-—ignore—-repos]

[-—ignore-repos—-used-for-build]

[-—set-repo=<source, type,alias,priority, imageinclude, package_
—gpgcheck>]

[-—add-repo=<source, type,alias,priority, imageinclude, package_
—~gpgcheck>...]

[-—add-package=<name>...]

[-—add-bootstrap-package=<name>. ..]

[-—delete-package=<name>...]

[-—signing-key=<key-file>...]
kiwi-ng system build help

116 Chapter 7. Command Line

KIWI NG Documentation, Release 9.20.6

7.6.2 DESCRIPTION

build an image in one step. The build command combines kiwi’s prepare and create steps
in order to build an image with just one command call. The build command creates the root
directory of the image below <target—-dir>/build/image—-root and if not specified
differently writes a log file <target-dir>/build/image-root.log. The result image
files are created in the specified target-dir.

7.6.3 OPTIONS

--add-bootstrap-package=<name> specify package to install as part of the early
kiwi bootstrap phase. The option can be specified multiple times

--add-package=<name> specify package to add(install). The option can be spec-
ified multiple times

--add-repo=<source,type,alias,priority,imageinclude,package_gpgcheck>
Add a new repository to the existing repository setup in the
XML description. This option can be specified multiple times.
For details about the provided option values see the —set-repo
information below

--allow-existing-root Allow to use an existing root directory from an earlier build
attempt. Use with caution this could cause an inconsistent root
tree if the existing contents does not fit to the former image type
setup

--clear-cache delete repository cache for each of the used repositories before
installing any package. This is useful if an image build should
take and validate the signature of the package from the origi-
nal repository source for any build. Some package managers
unconditionally trust the contents of the cache, which is ok for
cache data dedicated to one build but in case of kiwi the cache
is shared between multiple image builds on that host for perfor-
mance reasons.

--delete-package=<name> specify package to delete. The option can be specified
multiple times

--description=<directory> Path to the XML description. This is a directory con-
taining at least one _config.xml_ or _*.kiwi_ XML file.

--ignore-repos Ignore all repository configurations from the XML description.
Using that option is usally done with a sequence of —add-repo
options otherwise there are no repositories available for the im-
age build which would lead to an error.

--ignore-repos-used-for-build Works the same way as —ignore-repos except that
repository configurations which has the imageonly attribute set
to true will not be ignored.

7.6.

kiwi-ng system build

117

KIWI NG Documentation, Release 9.20.6

--set-repo=<source,type,alias,priority,imageinclude,package_gpgcheck>
Overwrite the first repository entry in the XML description with
the provided information:

¢ source

source url, pointing to a package repository which must
be in a format supported by the selected package man-
ager. See the URI_TYPES section for details about the
supported source locators.

s type

repository type, could be one of rpm-md, rpm-dir or
yast2.

 alias

An alias name for the repository. If not specified kiwi cal-
culates an alias name as result from a sha sum. The sha
sum is used to uniquely identify the repository, but not very
expressive. We recommend to set an expressive and uniq
alias name.

* priority

A number indicating the repository priority. How the value
is evaluated depends on the selected package manager.
Please refer to the package manager documentation for de-
tails about the supported priority ranges and their meaning.

* imageinclude

Set to either true or false to specify if this repository
should be part of the system image repository setup or not.

* package_gpgcheck

Set to either true or false to specify if this repository
should validate the package signatures.

--signing-key=<key-file> set the key file to be trusted and imported into the pack-
age manager database before performing any opertaion. This is
useful if an image build should take and validate repository and
package signatures during build time. This option can be speci-
fied multiple times

--target-dir=<directory> Path to store the build results.

118 Chapter 7. Command Line

KIWI NG Documentation, Release 9.20.6

7.6.4 URI_TYPES

 http:// | https:// | ftp://
remote repository delivered via http or ftp protocol.
* obs://

Open Buildservice repository. The source data is translated into an http url pointing to
http://download.opensuse.org.

e ibs://

Internal Open Buildservice repository. The source data is translated into an http url point-
ing to download.suse.de.

e iso://

Local iso file. kiwi loop mounts the file and uses the mount point as temporary directory
source type

o dir://

Local directory

7.7 kiwi-ng system create

7.7.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng system create -h | —--help

kiwi-ng system create —--root=<directory> —--target-dir=<directory>
[-—signing-key=<key-file>...]

kiwi-ng system create help

7.7.2 DESCRIPTION

Create an image from a previously prepared image root directory. The kiwi create call is usually
issued after a kiwi prepare command and builds the requested image type in the specified target
directory

7.7. kiwi-ng system create 119

http://download.opensuse.org

KIWI NG Documentation, Release 9.20.6

7.7.3 OPTIONS

--root=<directory> Path to the image root directory. This directory is usually
created by the kiwi prepare command. If a directory is used
which was not created by kiwi’s prepare command, it’s impor-
tant to know that kiwi stores image build metadata below the
image/ directory which needs to be present in order to let the
create command operate correctly.

--target-dir=<directory> Path to store the build results.

--signing-key=<key-file> set the key file to be trusted and imported into the pack-
age manager database before performing any opertaion. This is
useful if an image build should take and validate repository and
package signatures during build time. In create step this option
only affects the boot image. This option can be specified multi-
ple times

7.8 kiwi-ng image resize

7.8.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng image resize -h | —--help

kiwi-ng image resize —--target-dir=<directory> —--size=<size>
[-—root=<directory>]

kiwi-ng image resize help

7.8.2 DESCRIPTION

For disk based images, allow to resize the image to a new disk geometry. The additional space
is free and not in use by the image. In order to make use of the additional free space a repartition
process is required like it is provided by kiwi’s oem boot code. Therefore the resize operation
is useful for oem image builds most of the time.

7.8.3 OPTIONS

--root=<directory> The path to the root directory, if not specified kiwi searches
the root directory in build/image-root below the specified target
directory

--size=<size> New size of the image. The value is either a size in bytes or can
be specified with m=MB or g=GB. Example: 20g

--target-dir=<directory> Directory containing the kiwi build results

120 Chapter 7. Command Line

KIWI NG Documentation, Release 9.20.6

7.9 kiwi-ng image info

7.9.1 SYNOPSIS

kiwi-ng [global options] service <command> [<args>]

kiwi-ng image info -h | —--help
kiwi-ng image info —--description=<directory>
[-—resolve-package-1list]
[-—ignore—-repos]
[-—add-repo=<source, type,alias,priority>...]
kiwi-ng image info help

7.9.2 DESCRIPTION

Provides information about the specified image description. If no specific info option is pro-
vided the command just lists basic information about the image which could also be directly
obtained by reading the image XML description file. Specifying an extension option like
resolve-package—-1list will cause a dependency resolver to run over the list of pack-
ages and thus provides more detailed information about the image description.

7.9.3 OPTIONS

--add-repo=<source,type,alias,priority> Add repository with given source,
type, alias and priority.

--description=<directory> The description must be a directory containing a kiwi
XML description and optional metadata files.

--ignore-repos Ignore all repository configurations from the XML description.
Using that option is usally done with a sequence of —add-repo
options otherwise there are no repositories available for the pro-
cessing the requested image information which could lead to an
error.

--resolve-package-list Solve package dependencies and return a list of all pack-
ages including their attributes e.g size, shasum, and more.

7.9. kiwi-ng image info 121

CHAPTER
EIGHT

CONTRIBUTING

Note: Abstract

This document describes the development process of KIWI NG and how you can be part of it.
This description applies to version 9.20.6.

8.1 Using KIWI NG in a Python Project

Note: Abstract

KIWI NG is provided as python module under the kiwi namespace. It is available for the
python 3 version. The following description applies for KIWI NG version 9.20.6.

KIWI NG can also function as a module for other Python projects. The following example
demonstrates how to read an existing image description, add a new repository definition and
export the modified description on stdout.

import sys
import logging

from kiwi.xml_description import XMLDescription
from kiwi.xml_state import XMLState

description = XMLDescription ('path/to/kiwi/XML/config.xml")
xml_data = description.load()
xml_state = XMLState (

xml_data=xml_data, profiles=[], build _type='iso'

)

xml_state.add_repository (
repo_source="http://repo’,

(continues on next page)

122

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

repo_type="'rpm-md"',
repo_alias="myrepo',
repo_prio=99

)

xml_data.export (
outfile=sys.stdout, level=0
)

All classes are written in a way to care for a single responsibility in order to allow for re-use on
other use cases. Therefore it is possible to use KIWI NG outside of the main image building
scope to manage e.g the setup of loop devices, filesystems, partitions, etc. ..

8.2 Plugin Architecture

Each command provided by KIWI NG is written as a task plugin under the kiwi.tasks names-
pace. As a developer you can extend KIWI NG with custom task plugins if the following
conventions are taken into account:

8.2.1 Naming Conventions

Task Plugin File Name The file name of a task plugin must follow the pattern
<service>_<command>.py. This allows to invoke the task with kiwi-ng
service command ...

Task Plugin Option Handling KIWI NG uses the docopt module to handle options. Each
task plugin must use docopt to allow option handling.

Task Plugin Class The implementation of the plugin must be a class that matches the naming
convention: <Service><Command>Task. The class must inherit from the C1iTask
base class. On startup of the plugin, KIWI NG expects an implementation of the
process method.

Task Plugin Entry Point Registration of the plugin must be done in setup.py using the
entry_points concept from Python’s setuptools.

'entry_points': {
'kiwi.tasks': [
'service command=kiwi.tasks.service command'

8.2. Plugin Architecture 123

KIWI NG Documentation, Release 9.20.6

8.2.2 Example Plugin

Note: The following example assumes an existing Python project which was set up according
to the Python project rules and standards.

1. Create the task plugin directory kiwi/tasks
2. Create the entry point in setup.py.
Assuming we want to create the service named relax providing the command justdoit
this would be the following entry point definition in setup.py:
'entry_points': {
'kiwi.tasks': [
'relax_Jjustdoit=kiwi.tasks.relax_justdoit'
1
}
3. Create the plugin code in the file kiwi/tasks/relax_Jjustdoit .py with the fol-
lowing content:
usage: kiwi-ng relax justdoit —-h | ——-help
kiwi-ng relax justdoit —-—-now
commands :
justdoit
time to relax
options:
——now
right now. For more details about docopt
see: http://docopt.org
mmnn
These imports requires kiwi to be part of your environment
It can be either installed from pip into a virtual development
environment or from the distribution package manager
from kiwi.tasks.base import CliTask
from kiwi.help import Help
class RelaxJustDoItTask (CliTask):
def process(self):
self.manual = Help()
if self.command_args.get ('help') is True:
The following will invoke man to show the man page
for the requested command. Thus for the call to
succeed a manual page needs to be written and
installed by the plugin
return self.manual.show('kiwi::relax::justdoit')
(continues on next page)
124 Chapter 8. Contributing

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

print (
'https://genius.com/Frankie—-goes—-to-hollywood-relax-—
~lyrics'

)

4. Test the plugin

$./setup.py develop
$ kiwi-ng relax justdoit --now

8.3 Extending KIWI NG with Custom Operations

Note: Abstract

Users building images with KIWI NG need to implement their own infrastructure if the image
description does not provide a way to embed custom information which is outside of the scope
of the general schema as it is provided by KIWI NG today.

This document describes how to create an extension plugin for the KIWI NG schema to add
and validate additional information in the KIWI NG image description.

Such a schema extension can be used in an additional KIWI NG task plugin to provide a new
subcommand for KIWI NG. As of today there is no other plugin interface except for providing
additional KIWI NG commands implemented.

Depending on the demand for custom plugins, the interface to hook in code into other parts of
the KIWI NG processing needs to be extended.

This description applies for version 9.20.6.

8.3.1 The <extension> Section

The main KIWI NG schema supports an extension section which allows to specify any XML
structure and attributes as long as they are connected to a namespace. According to this any
custom XML structure can be implemented like the following example shows:



8.3. Extending KIWI NG with Custom Operations 125

KIWI NG Documentation, Release 9.20.6

* Any toplevel namespace must exist only once

» Multiple different toplevel namespaces are allowed, e.g my_plugin_a, my_plugin_b

8.3.2 RELAX NG Schema for the Extension

If an extension section is found, KIWI NG looks up its namespace and asks the main XML
catalog for the schema file to validate the extension data. The schema file must be a RELAX
NG schema in the .rng format. We recommend to place the schema as /usr/share/xml/

kiwi/my_plugin.rng

For the above example the RELAX NG Schema in the compressed format my_plugin.rnc

would look like this:

namespace my_plugin = "http://www.my_plugin.com"

start =
k.my_feature

div {
k.my_feature.attlist = empty
k.my_feature =
element my_plugin:my_feature {
k.my_feature.attlist &
k.title

div

—_

k.title.name.attribute =
attribute name { text }

o

k.title =
element my_ plugin:title {
k.title.attlist

.title.attlist = k.title.name.attribute

In order to convert this schema to the .rng format just call:

$ trang -I rnc -0 rng my_plugin.rnc /usr/share/xml/kiwi/my_plugin.

—INg

126

Chapter 8. Contributing

KIWI NG Documentation, Release 9.20.6

8.3.3 Extension Schema in XML catalog

As mentioned above the mapping from the extension namespace to the correct RELAX NG
schema file is handled by a XML catalog file. The XML catalog for the example use here looks
like this:

<?xml version="1.0"7?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<system
systemId="http://www.my_plugin.com"
uri="file:////usr/share/xml/kiwi/my_plugin.rng"/>
</catalog>

For resolving the catalog KIWI NG uses the xmlcatalog command and the main XML
catalog from the system which is /etc/xml/catalog.

Note: It depends on the distribution and its version how the main catalog gets informed about
the existence of the KIWI NG extension catalog file. Please consult the distribution manual
about adding XML catalogs.

If the following command provides the information to the correct RELAX NG schema file you
are ready for a first test:

$ xmlcatalog /etc/xml/catalog http://www.my_plugin.com

8.3.4 Using the Extension
In order to test your extension place the example extension section from the beginning of this
document into one of your image description’s config.xml file

The following example will read the name attribute from the title section of the my_feature root
element and prints it:

import logging
from kiwi.xml description import XMLDescription

description = XMLDescription('path/to/kiwi/XML/config.xml")
description.load()

my_plugin = description.get_extension_xml_data ('my_plugin')

print (my_plugin.getroot () [0] .get ("name'))

8.3. Extending KIWI NG with Custom Operations 127

KIWI NG Documentation, Release 9.20.6

8.4 The Basics

The core appliance builder is developed in Python and follows the test driven development
rules.

If you want to implement a bigger feature, consider opening an issue on GitHub first to discuss
the changes. Or join the discussion in the #kiwi channel on Riot.im.

8.5 Fork the upstream repository

1. On GitHub, navigate to: https://github.com/OSInside/kiwi

2. In the top-right corner of the page, click Fork.

8.6 Create a local clone of the forked repository

$ git clone https://github.com/YOUR-USERNAME/kiwi

$ git remote add upstream https://github.com/0SInside/kiwi.git

8.7 Install Required Operating System Packages

KIWI NG requires the following additional packages which are not provided by pip:
XML processing libraries 1ibxml2 and 1ibxslt (for 1xml)

Python header files, GCC compiler and glibc-devel header files Required for python mod-
ules that hooks into shared library context

Spell Checking library Provided by the enchant library
ShellCheck ShellCheck script linter.
ISO creation program One of xorriso (preferred) or genisoimage.

LaTeX documentation build environment A full LaTeX installation is required to build the
PDF documentation'.

The above mentioned system packages will be installed by calling the
install_devel_packages.sh helper script from the checked out Git repository
as follows:

! Sphinx requires a plethora of additional LaTeX packages. Unfortunately there is currently no comprehensive
list available. On Ubuntu/Debian installing texlive-latex-extra should be sufficient. For Fedora, consult
the package list from .gitlab-ci.yml.

128 Chapter 8. Contributing

https://about.riot.im
https://github.com/OSInside/kiwi
https://github.com/koalaman/shellcheck

KIWI NG Documentation, Release 9.20.6

$ sudo helper/install_devel_packages.sh

Note: The helper script checks for the package managers zypper and dnf and associates a
distribution with it. If you use a distribution that does not use one of those package managers the
script will not install any packages and exit with an error message. In this case we recommend
to take a look at the package list encoded in the script and adapt to your distribution and package
manager as needed.

8.8 Create a Python Virtual Development Environment

The following commands initializes and activates a development environment for Python 3:

$ tox —e devel
$ source .tox/3/bin/activate

The commands above automatically creates the application script called kiwi—-ng, which al-
lows you to run KIWI NG from the Python sources inside the virtual environment:

‘$ kiwi-ng --help

Warning: The virtualenv’s SPATH will not be taken into account when calling KIWI NG
via sudo! Use the absolute path to the KIWI NG executable to run an actual build using
your local changes:

$ sudo SPWD/.tox/3/bin/kiwi-ng system build ...

To leave the development mode, run:

$ deactivate

To resume your work, ed into your local Git repository and call:

$ source .tox/3/bin/activate

8.9 Running the Unit Tests

We use tox to run the unit tests. Tox sets up its own virtualenvs inside the .tox directory
for multiple Python versions and should thus not be invoked from inside your development
virtualenv.

Before submitting your changes via a pull request, ensure that all tests pass and that the code
has the required test coverage via the command:

8.8. Create a Python Virtual Development Environment 129

KIWI NG Documentation, Release 9.20.6

$ tox

We also include pytest-xdist in the development virtualenv which allows to run the unit
tests in parallel. It is turned off by default but can be enabled via:

$ tox "-n NUMBER_OF_PROCESSES"

where you can insert an arbitrary number as NUMBER_OF_PROCESSES (or a shell command
like $ (nproc)). Note that the double quotes around —n NUMBER_OF_PROCESSES are
required (otherwise tox will consume this command line flag instead of forwarding it to
pytest).

The previous call would run the unit tests for different Python versions, check the source code
for errors and build the documentation.

If you want to see the available targets, use the option —1 to let tox print a list of them:

$ tox -1

To only run a special target, use the —e option. The following example runs the test cases for
the Python 3.6 interpreter only:

$ tox —e unit_py3_6

8.10 Create a Branch for each Feature or Bugfix

Code changes should be done in an extra Git branch. This allows for creating GitHub pull
requests in a clean way. See also: Collaborating with issues and pull requests

$ git checkout -b my-topic-branch

Make and commit your changes.

Note: You can make multiple commits which is generally useful to give your changes a clear
structure and to allow us to better review your work.

Note: Your work is important and must be signed to ensure the integrity of the repository and
the code. Thus we recommend to setup a signing key as documented in Signing Git Patches.

$ git commit -S -a

Run the tests and code style checks. All of these are also performed by the Travis CI and
GitLab CI integration test systems when a pull request is created.

130 Chapter 8. Contributing

https://help.github.com/en/categories/collaborating-with-issues-and-pull-requests
https://travis-ci.com/OSInside/kiwi
https://gitlab.com/schaefi/kiwi-ci/pipelines

KIWI NG Documentation, Release 9.20.6

$ tox

Once everything is done, push your local branch to your forked repository and create a pull
request into the upstream repository.

$ git push origin my-topic-branch

Thank you much for contributing to KIWI NG. Your time and work effort is very much appre-
ciated!

8.11 Coding Style

KIWI NG follows the general PEP8 guidelines with the following exceptions:

* We do not use free functions at all. Even utility functions must be part of a class, but
should be either prefixed with the @classmethod or @staticmethod decorators
(whichever is more appropriate).

* Do not set module and class level variables, put these into the classes’ __init_
method.

* The names of constants are not written in all capital letters.

8.11.1 Documentation

KIWI NG uses Sphinx for the API and user documentation.

In order to build the HTML documentation call:

tox —-e doc

or to build the full documentation (including a PDF generated by LaTeX?):

tox —e packagedoc

Document all your classes, methods, their parameters and their types using the standard re-
StructuredText syntax as supported by Sphinx, an example class is documented as follows:

class Example:

mmn

*+Example classx*x*

:param str param: A parameter

:param bool : Source file name to compress

:param list supported _zipper: List of supported compression,,
—~tools

(continues on next page)

3 Requires a full LaTeX installation.

8.11. Coding Style 131

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

rattr Optional[str] attr: A class attribute

mmn

def _ _init__ (self, param, param_w_default=False) :
self.attr = param if param w_default else None

def method(self, param):

mmn

A method that takes a parameter.

:param list param: a parameter
:return: whether param 1is very long
:rtype: bool

mmrn

return len (param) > 50

Try to stick to the following guidelines when documenting source code:
* Classes should be documented directly in their main docstring and notin __init__ .
* Document every function parameter and every public attribute including their types.

* Only public methods should be documented, private methods don’t have to, unless they
are complex and it is not easy to grasp what they do (which should be avoided anyway).

Please also document any user-facing changes that you implementing (e.g. adding a new build
type) in the user documentation, which can be found in doc/source. General documenta-
tion should be put into the working_with_kiwi/ subfolder, whereas documentation about
more specialized topics would belong into the building/ subfolder.

Adhere to a line limit of 75 characters when writing the user facing documentation”.

2 Configure your editor to automatically break lines and/or reformat paragraphs. For Emacs you can use
M-x set-fill-column RET 75 and M-x auto-fill-mode RET for automatic filling of paragraphs
in conjunction with M-x fill-paragraph (usually bound to M—q) to reformat a paragraph to adhere to the
current column width. For editing reStructuredText we recommend rst-mode (built-in to Emacs since version
23.1). Vim users can set the text width via : tw 75 and then use the commands gwip or gqg.

132 Chapter 8. Contributing

KIWI NG Documentation, Release 9.20.6

8.12 Additional Information

The following sections provides further information about the repository integrity, version,
package and documentation management.

8.12.1 Signing Git Patches

To ensure the integrity of the repository and the code base, patches sent for inclusion should be
signed with a GPG key.

To prepare Git to sign commits, follow these instructions:

1. Create a key suitable for signing (it is not recommended to use existing keys to not mix
it with your email environment):

$ gpg2 ——expert —--full-gen-key

2. Either choose a RSA key for signing (option (4)) or an ECC key for signing (option
(10)). For a RSA key choose a key size of 4096 bits and for a ECC key choose Curve
25519 (option (1)). Enter a reasonable validity period (we recommend 2 to 5 years).
Complete the key generation by entering your name and email address.

3. Add the key ID to your git configuration, by running the following git config com-
mands:

$ git config --local user.signingkey S$YOUR_SIGN_KEY_ ID
$ git config —--local commit.gpgSign true

Omitting the flag ——1ocal will make these settings global for all repositories (they will
be added to ~/ . gitconfig). You can find your signkey’s ID via:

$ gpg2 —-list-keys —--keyid-format long SYOUR_EMATL
pub rsa4096/AABBCCDDEEFF0011 2019-04-26 [S] [expires: 2021-04-

—~16]
AAAAAAAAAAAAAAAAAAAAAABBBBEBBBBBBBEBBBBEB
uid [ultimate] YOU <SYOUR_EMAIL>

The key’s ID in this case would be AABBCCDDEEFF0011. Note that your signkey will
have only a [S] after the creation date, nota [SC] (then you are looking at your ordinary
GPG key that can also encrypt).

8.12. Additional Information 133

KIWI NG Documentation, Release 9.20.6

8.12.2 Bumping the Version
The KIWI NG project follows the Semantic Versioning scheme. We use the bumpversion
tool for consistent versioning.

Follow these instructions to bump the major, minor, or patch part of the KIWI NG version.
Ensure that your repository is clean (i.e. no modified and unknown files exist) beforehand
running bumpversion.

* For backwards-compatible bug fixes:

$ bumpversion patch

* For additional functionality in a backwards-compatible manner. When changed, the
patch level is reset to zero:

$ bumpversion minor

* For incompatible API changes. When changed, the patch and minor levels are reset to
zero:

$ bumpversion major

8.12.3 Creating a RPM Package

We provide a template for a RPM spec file in package/python-kiwi-spec-template
alongside with a rpmlint configuration file and an automatically updated python-kiwi.
changes.

To create the necessary files to build a RPM package via rpmbuild, run:

$ make build

The sources are collected in the dist/ directory. These can be directly build it with
rpmbuild, fedpkg, or submitted to the Open Build Service using osc.

134 Chapter 8. Contributing

https://semver.org

CHAPTER
NINE

IMAGE DESCRIPTION XML SCHEMA

135

CHAPTER
TEN

PYTHON API

Note: This API documentation covers KIWI NG 9.20.6

10.1 kiwi Package

10.1.1 Submodules

10.1.2 kiwi.app Module
class kiwi.app.App
Bases: object
Implements creation of task instances

Each task class implements a process method which is called when constructing an in-
stance of App

10.1.3 kiwi.cli Module
class kiwi.cli.Cli
Bases: object
Implements the main command line interface

An instance of the Cli class builds the entry point for the application and implements
methods to load further command plugins which itself provides their own command line
interface

get_command ()
Extract selected command name

Returns command name

Return type str

136

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

get_command_args ()
Extract argument dict for selected command

Returns

Contains dictionary of command arguments

{

'——command-option': 'value'

Return type dict

get_global_args ()
Extract argument dict for global arguments

Returns

Contains dictionary of global arguments

{

'-—global-option': 'value'

Return type dict

get_servicename ()
Extract service name from argument parse result

Returns service name
Return type str

invoke_kiwicompat (compat_args)
Execute kiwicompat with provided legacy KIWI command line arguments

Example:

invoke_kiwicompat (
'--build', 'description', '—--type', 'vmx',
'-d', 'destination'

Parameters compat_args (11st) - legacy kiwi command arguments
load command ()
Loads task class plugin according to service and command name
Returns loaded task module
Return type object

show_and_exit_on_help_ request ()
Execute man to show the selected manual page

10.1. kiwi Package 137

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

10.1.4 kiwi.command Module

class kiwi.command.Command
Bases: object

Implements command invocation

An instance of Command provides methods to invoke external commands in blocking
and non blocking mode. Control of stdout and stderr is given to the caller

static call (command, custom_env=None)
Execute a program and return an io file handle pair back. stdout and stderr are both
on different channels. The caller must read from the output file handles in order
to actually run the command. This can be done using the CommandlIterator from
command_process

Example:
process = Command.call(['ls', '—-1'])
Parameters

e command (! ist)— command and arguments
* custom_env (11st)— custom os.environ
Returns

Contains process results in command type

command (
output='string', output_available=bool,
error='string', error_available=bool,
process=subprocess

Return type namedtuple

static run (command, custom_env=None, raise_on_error=True,

stderr_to_stdout=Fualse)
Execute a program and block the caller. The return value is a hash containing the

stdout, stderr and return code information. Unless raise_on_error is set to false an
exception is thrown if the command exits with an error code not equal to zero

Example:
result = Command.run(['ls', '—1'])
Parameters

e command (I 1st)—command and arguments

e custom_env (11ist)— custom os.environ

138 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

* raise_on_error (bool) — control error behaviour
e stderr to_stdout (bool) —redirects stderr to stdout
Returns

Contains call results in command type

command (output="'string', error='string', |
—returncode=int)

Return type namedtuple

kiwi.command.command_ type
alias of kiwi.command.command

10.1.5 kiwi.command_ process Module
class kiwi.command_process.CommandIterator (command)
Bases: object
Implements an Iterator for Instances of Command
Parameters command (subprocess) — instance of subprocess

get_error_code ()
Provide return value from processed command

Returns errorcode
Return type int

get_error_ output ()
Provide data which was sent to the stderr channel

Returns stderr data
Return type str

get_pid()
Provide process ID of command while running

Returns pid
Return type int

kill ()
Send kill signal SIGTERM to command process

class kiwi.command_process.CommandProcess (command,

log_topic="system’)
Bases: object

Implements processing of non blocking Command calls

Provides methods to iterate over non blocking instances of the Command class with and
without progress information

10.1. kiwi Package 139

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

Parameters
* command (subprocess) — instance of subprocess
* log _topic (string)— topic string for logging

create_match_method (method)
create a matcher function pointer which calls the given method
method(item_to_match, data) on dereference

Parameters method (function) — function reference
Returns function pointer
Return type object

poll ()
Iterate over process, raise on error and log output

poll_and watch ()
Iterate over process don’t raise on error and log stdout and stderr

poll_show_progress (items_to_complete, match_method)
Iterate over process and show progress in percent raise on error and log output

Parameters
* items_to_complete (1ist)— all items
* match_method (function)— method matching item

returncode ()

10.1.6 kiwi.defaults Module

class kiwi.defaults.Defaults

Bases: object
Implements default values
Provides static methods for default values and state information

get (key)
Implements get method for profile elements

Parameters key (string) — profile keyname
Returns key value
Return type str

static get_archive_ image_types ()
Provides list of supported archive image types

Returns archive names

Return type list

as

140

Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

static get_bios_image_ name ()
Provides bios core boot binary name

Returns name
Return type str

static get_bios_module_directory_ name ()
Provides x86 BIOS directory name which stores the pc binaries

Returns directory name
Return type str

static get_boot_image_description_path ()
Provides the path to find custom kiwi boot descriptions

Returns directory path
Return type str

static get_boot_image_strip_ file()
Provides the file path to bootloader strip metadata. This file contains information
about the files and directories automatically striped out from the kiwi initrd

Returns file path
Return type str

static get_buildservice_env_name ()
Provides the base name of the environment file in a buildservice worker

Returns file basename
Return type str

static get_common_functions_file ()
Provides the file path to config functions metadata.

This file contains bash functions used for system configuration or in the boot code
from the kiwi initrd

Returns file path
Return type str

static get_container base image_ tag()
Provides the tag used to identify base layers during the build of derived images.

Returns tag
Return type str

static get_container compression ()
Provides default container compression algorithm

Returns name

Return type str

10.1. kiwi Package 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

static get_container image_types ()
Provides list of supported container image types

Returns container names
Return type list

static get_custom_rpm bootstrap_macro_name ()
Returns the rpm bootstrap macro file name created in the custom rpm macros path

Returns filename
Return type str

static get_custom_ rpm image_macro_name ()
Returns the rpm image macro file name created in the custom rpm macros path

Returns filename
Return type str

static get_custom_rpm macros_path ()
Returns the custom macros directory for the rpm database.

Returns path name
Return type str

static get_default_boot_mbytes ()
Provides default boot partition size in mbytes

Returns mbsize value
Return type int

static get_default_boot_timeout_seconds ()
Provides default boot timeout in seconds

Returns seconds
Return type int

static get_default_container_ created_ by ()
Provides the default ‘created by’ history entry for containers.

Returns the specific kiwi version used for the build
Return type str

static get_default_container_ name ()
Provides the default container name.

Returns name
Return type str

static get_default_container_ subcommand ()
Provides the default container subcommand.

Returns command as a list of arguments

142

Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Return type list

static get_default_container_ tag()
Provides the default container tag.

Returns tag
Return type str

static get_default_disk_start_sector()
Provides the default initial disk sector for the first disk partition.

Returns sector value
Return type int

static get_default_efi_boot_mbytes ()
Provides default EFI partition size in mbytes

Returns mbsize value
Return type int

static get_default_efi_partition_table_type ()
Provides the default partition table type for efi firmwares.

Returns partition table type name
Return type str

static get_default_firmware (arch)
Provides default firmware for specified architecture

Parameters arch (string) — platform.machine
Returns firmware name
Return type str

static get_default_inode_size ()
Provides default size of inodes in bytes. This is only relevant for inode based filesys-
tems

Returns bytesize value
Return type int

static get_default_legacy bios_mbytes ()
Provides default size of bios_grub partition in mbytes

Returns mbsize value
Return type int

static get_default_live_iso_root_filesystem/()
Provides default live iso root filesystem type

Returns filesystem name

Return type str

10.1. kiwi Package 143

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

static get_default_live_iso_type ()
Provides default live iso union type

Returns live iso type
Return type str

static get_default_packager_ tool (package_manager)
Provides the packager tool according to the package manager

Parameters package_manager (string)— package manger name
Returns packager tool binary name
Return type str

static get_default_prep_mbytes ()
Provides default size of prep partition in mbytes

Returns mbsize value
Return type int

static get_default_uri_type ()
Provides default URI type

Absolute path specifications used in the context of an URI will apply the specified
default mime type

Returns URI mime type
Return type str

static get_default_video_mode ()
Provides 800x600 default video mode as hex value for the kernel

Returns vesa video kernel hex value
Return type str

static get_default_ volume_group_name ()
Provides default LVM volume group name

Returns name
Return type str

static get_disk_ format_types ()
Provides supported disk format types

Returns disk types
Return type list

static get_disk_image_types ()
Provides supported disk image types

Returns disk image type names

Return type list

144

Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

static get_dracut_conf_ name ()
Provides file path of dracut config file to be used with KIWI

Returns file path name
Return type str

static get_ec2_capable_firmware_names ()
Provides list of EC2 capable firmware names. These are those for which kiwi sup-
ports the creation of disk images bootable within the Amazon EC2 public cloud

Returns firmware names
Return type list

static get_efi_capable_ firmware_names ()
Provides list of EFI capable firmware names. These are those for which kiwi sup-
ports the creation of an EFI bootable disk image

Returns firmware names
Return type list

static get_efi_image_name (arch)
Provides architecture specific EFI boot binary name

Parameters arch (string)— platform.machine
Returns name
Return type str

static get_efi_module_directory name (arch)
Provides architecture specific EFI directory name which stores the EFI binaries for
the desired architecture.

Parameters arch (string) — platform.machine
Returns directory name
Return type str

get_exclude_list_for non_physical_devices ()
Provides the list of folders that are not associated with a physical device. KIWI
returns the basename of the folders typically used as mountpoint for those devices.

Returns list of file and directory names
Return type list

static get_exclude_list_for root_data_sync()
Provides the list of files or folders that are created by KIWI for its own purposes.
Those files should be not be included in the resulting image.

Returns list of file and directory names

Return type list

10.1. kiwi Package 145

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

static get_failsafe_kernel options ()
Provides failsafe boot kernel options

Returns

list of kernel options

['option=value', 'option']

Return type list

static get_filesystem image_types ()
Provides list of supported filesystem image types

Returns filesystem names
Return type list

static get_firmware_types ()
Provides supported architecture specific firmware types

Returns firmware types per architecture
Return type dict

static get_grub_basic_modules (multiboot)
Provides list of basic grub modules

Parameters multiboot (bool) — grub multiboot mode
Returns list of module names
Return type list

static get_grub_bios_core_loader (root_path)
Provides grub bios image

Searches distribution specific locations to find the core bios image below the given
root path

Parameters root_path (string)—image root path
Returns file path or None
Return type str

static get_grub_bios_modules (multiboot=False)
Provides list of grub bios modules

Parameters multiboot (bool) — grub multiboot mode
Returns list of module names
Return type list

static get_grub_boot_directory_ name (lookup_path)
Provides grub2 data directory name in boot/ directory

146 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

Depending on the distribution the grub2 boot path could be either boot/grub2 or
boot/grub. The method will decide for the correct base directory name according to
the name pattern of the installed grub2 tools

Returns directory basename
Return type str

static get_grub_efi_font_directory (root_path)
Provides distribution specific EFI font directory used with grub.

Parameters root_path (st ring) —image root path
Returns file path or None
Return type str

static get_grub_efi_modules (multiboot=False)
Provides list of grub efi modules

Parameters multiboot (bool) — grub multiboot mode
Returns list of module names
Return type list

static get_grub_ ofw_modules ()
Provides list of grub ofw modules (ppc)

Returns list of module names
Return type list

static get_grub_path (root_path, filename, raise_on_error=True)
Provides grub path to given search file

Depending on the distribution grub could be installed below a grub2 or grub di-
rectory. grub could also reside in /usr/lib as well as in /usr/share. Therefore this
information needs to be dynamically looked up

Parameters
* root_path (string)—root path to start the lookup from
e filename (string) - filename to search
e raise_on_error (bool) —raise on not found, defaults to True

The method returns the path to the given grub search file. By default it raises a
KiwiBootLoaderGrubDataError exception if the file could not be found in any of
the search locations. If raise_on_error is set to False and no file could be found the
function returns None

Returns filepath
Return type str

static get_imported_root_image (root_dir)
Provides the path to an imported root system image

10.1. kiwi Package 147

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

If the image description specified a derived_from attribute the file from this attribute
is copied into the root_dir using the name as provided by this method

Parameters root_dir (string)—image root directory
Returns file path name
Return type str

static get_install_volume_id()
Provides default value for ISO volume ID for install media

Returns name
Return type str

static get_iso_boot_path(()
Provides arch specific relative path to boot files on kiwi iso filesystems

Returns relative path name
Return type str

static get_iso_tool_category ()
Provides default iso tool category

Returns name
Return type str

static get_isolinux_bios_grub_loader ()
Return name of eltorito grub image used as isolinux loader in BIOS mode if
isolinux.bin should not be used

Returns file base name
Return type str

static get_live_dracut_module_from_flag (flag_name)
Provides flag_name to dracut module name map

Depending on the value of the flag attribute in the KIWI image description a specific
dracut module needs to be selected

Returns dracut module name
Return type str

static get_live_image_types ()
Provides supported live image types

Returns live image type names
Return type list

static get_live_iso_persistent_boot_options (persistent_filesystem=None)
Provides list of boot options passed to the dracut kiwi-live module to setup persis-
tent writing

Returns list of boot options

148 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

Return type list

static get_luks_key_ length /()
Provides key length to use for random luks keys

static get_lvm_overhead_mbytes ()
Provides empiric LVM overhead size in mbytes

Returns mbsize value
Return type int

static get_min_partition_mbytes ()
Provides default minimum partition size in mbytes

Returns mbsize value
Return type int

static get_min_volume_mbytes ()

Provides default minimum LVM volume size in mbytes

Returns mbsize value
Return type int

static get_network image_types ()
Provides supported pxe image types

Returns pxe image type names
Return type list

static get_obs_download_ server url ()

Provides the default download server url hosting the public open buildservice repos-

itories
Returns url path
Return type str

static get_oci_archive_tool ()
Provides the default OCI archive tool name.

Returns name
Return type str

static get_preparer ()
Provides ISO preparer name

Returns name
Return type str

get_profile_file()
Return name of profile file for given root directory

static get_publisher ()
Provides ISO publisher name

10.1. kiwi Package

149

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Returns name
Return type str

static get_recovery_ spare_mbytes ()
Provides spare size of recovery partition in mbytes

Returns mbsize value
Return type int

static get_s390_disk_block_size()
Provides the default block size for s390 storage disks

Returns blocksize value
Return type int

static get_s390_disk_type ()
Provides the default disk type for s390 storage disks

Returns type name
Return type str

static get_schema_file()
Provides file path to kiwi RelaxNG schema

Returns file path
Return type str

static get_shared_cache_location(()
Provides the shared cache location

This is a directory which shares data from the image buildsystem host with the
image root system. The location is returned as an absolute path stripped off by the
leading ‘/’. This is because the path is transparently used on the host /<cache-dir>
and inside of the image imageroot/<cache-dir>

Returns directory path
Return type str

static get_shim_loader (rootf_path)
Provides shim loader file path

Searches distribution specific locations to find shim.efi below the given root path
Parameters root_path (string)—image root path
Returns file path or None
Return type str

static get_shim_vendor_directory (root_path)
Provides shim vendor directory

Searches distribution specific locations to find shim.efi below the given root path
and return the directory name to the file found

150 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Parameters root_path (string)—image root path
Returns directory path or None
Return type str

static get_signed_grub_loader (root_path)
Provides shim signed grub loader file path

Searches distribution specific locations to find grub.efi below the given root path
Parameters root_path (string)—image root path
Returns file path or None
Return type str

static get_snapper config_ template_file ()
Provides the default configuration template file for snapper

Returns file
Return type str

static get_solvable_location ()
Provides the directory to store SAT solvables for repositories. The solvable files are
used to perform package dependency and metadata resolution

Returns directory path
Return type str

static get_swapsize_mbytes ()
Provides swapsize in MB

static get_syslinux_modules ()
Returns list of syslinux modules to include on ISO images that boots via isolinux

Returns base file names
Return type list

static get_syslinux_search_paths ()
syslinux is packaged differently between distributions. This method returns a list of
directories to search for syslinux data

Returns directory names
Return type list

static get_unsigned_grub_loader (rootf_path)
Provides unsigned grub efi loader file path

Searches distribution specific locations to find grub.efi below the given root path
Parameters root_path (string) —image root path
Returns file path or None

Return type str

10.1. kiwi Package 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

static get_vagrant_config virtualbox_ guest_additions ()
Provides the default value for vagrantconfig.
virtualbox_guest_additions_present

Returns whether guest additions are expected to be present in the vagrant
box

Return type bool

static get_video_mode_map ()
Provides video mode map

Assign a tuple to each kernel vesa hex id for each of the supported bootloaders
Returns

video type map

{'kernel hex_mode': video_type (grub2="mode"', |,
—isolinux="mode"'") }

Return type dict

static get_volume_id()
Provides default value for ISO volume ID

Returns name
Return type str

static get_xsl_ stylesheet_file ()
Provides the file path to the KIWI XSLT style sheets

Returns file path
Return type str

static get_xz_ compression_options ()
Provides compression options for the xz compressor

Returns

Contains list of options

['-—option=value']

Return type list

static is_buildservice_worker ()
Checks if build host is an open buildservice machine

The presence of /.buildenv on the build host indicates we are building inside of the
open buildservice

Returns True if obs worker, else False

Return type bool

152 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

static is x86 arch (arch)
Checks if machine architecture is x86 based

Any arch that matches 32bit and 64bit x86 architecture causes the method to return
True. Anything else will cause the method to return False

Return type bool

static project_f£file (filename)
Provides the python module base directory search path

The method uses the resource_filename method to identify files and directories from
the application

Parameters filename (string) — relative project file
Returns absolute file path name
Return type str

to_profile (profile)
Implements method to add list of profile keys and their values to the specified in-
stance of a Profile class

Parameters profile (ob ject) — Profile instance

10.1.7 kiwi.exceptions Module

exception kiwi.exceptions.KiwiArchiveSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an unsupported image archive type is used.

exception kiwi.exceptions.KiwiArchiveTarError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if impossible to determine which tar command version is installed on
the underlying system

exception kiwi.exceptions.KiwiBootImageDumpError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an instance of BootImage* can not be serialized on as file via pickle
dump

exception kiwi.exceptions.KiwiBootImageSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an unsupported initrd system type is used.

exception kiwi.exceptions.KiwiBootLoaderConfigSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a configuration for an unsupported bootloader is requested.

10.1. kiwi Package 153

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

exception kiwi.exceptions.KiwiBootLoaderGrubDataError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if no grub installation was found.

exception kiwi.exceptions.KiwiBootLoaderGrubFontError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if no grub unicode font was found.

exception kiwi.exceptions.KiwiBootLoaderGrubInstallError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if grub install to master boot record has failed.

exception kiwi.exceptions.KiwiBootLoaderGrubModulesError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the synchronisation of modules from the grub installation to the boot
space has failed.

exception kiwi.exceptions.KiwiBootLoaderGrubPlatformError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to use grub on an unsupported platform.

exception kiwi.exceptions.KiwiBootLoaderGrubSecureBootError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the Microsoft signed shim loader or grub2 loader could not be found
in the image root system

exception kiwi.exceptions.KiwiBootLoaderInstallSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an installation for an unsupported bootloader is requested.

exception kiwi.exceptions.KiwiBootLoaderTargetError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the target to read the bootloader path from is not a disk or an iso
image.

exception kiwi.exceptions.KiwiBootLoaderZiplInstallError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the installation of zipl has failed.

exception kiwi.exceptions.KiwiBootLoaderZiplPlatformError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a configuration for an unsupported zipl architecture is requested.

exception kiwi.exceptions.KiwiBootLoaderZiplSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the data set to configure the zipl bootloader is incomplete.

154 Chapter 10. Python API

KIWI NG Documentation, Release 9.20.6

exception kiwi.exceptions.KiwiBootStrapPhaseFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the bootstrap phase of the system prepare command has failed.

exception kiwi.exceptions.KiwiBuildahError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised on inconsistent buildah class calls

exception kiwi.exceptions.KiwiBundleError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the system bundle command has failed.

exception kiwi.exceptions.KiwiCommandCapabilitiesError (message)
Bases: kiwi.exceptions.KiwiError

Exception is raised when some the CommandCapabilities methods fails, usually meaning
there is some issue trying to parse some command output.

exception kiwi.exceptions.KiwiCommandError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an external command called via a Command instance has returned
with an exit code != 0 or could not be called at all.

exception kiwi.exceptions.KiwiCommandNotFound (message)
Bases: kiwi.exceptions.KiwiCommandError

Exception raised if any executable command cannot be found in the evironment PATH
variable.

exception kiwi.exceptions.KiwiCommandNotLoaded (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a kiwi command task module could not be loaded.

exception kiwi.exceptions.KiwiCompatError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the given kiwi compatibility command line could not be understood
by the compat option parser.

exception kiwi.exceptions.KiwiCompressionFormatUnknown (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the compression format of the data could not be detected.

exception kiwi.exceptions.KiwiConfigFileNotFound (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if no kiwi XML description was found.

exception kiwi.exceptions.KiwiContainerBuilderError (message)
Bases: kiwi.exceptions.KiwiError

Exception is raised when something fails during a container image build procedure.

10.1. kiwi Package 155

KIWI NG Documentation, Release 9.20.6

exception kiwi.exceptions.KiwiContainerImageSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt to create a container instance for an unsupported container
type is performed.

exception kiwi.exceptions.KiwiContainerSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an error in the creation of the container archive happened.

exception kiwi.exceptions.KiwiDataStructureError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the XML description failed to parse the data structure.

exception kiwi.exceptions.KiwiDebootstrapError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if not enough user data to call debootstrap were provided or the deboot-
strap has failed.

exception kiwi.exceptions.KiwiDecodingError (message)
Bases: kiwi.exceptions.KiwiError

Exception is raised on decoding literals failure

exception kiwi.exceptions.KiwiDescriptionConflict (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if both, a description file and xml_content is provided

exception kiwi.exceptions.KiwiDescriptionInvalid (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the XML description failed to validate the XML schema.

exception kiwi.exceptions.KiwiDeviceProviderError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a storage provide is asked for its managed device but no such device
exists.

exception kiwi.exceptions.KiwiDiskBootImageError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a kiwi boot image does not provide the requested data, e.g kernel, or
hypervisor files.

exception kiwi.exceptions.KiwiDiskFormatSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to create a disk format instance of an unsup-
ported disk format.

exception kiwi.exceptions.KiwiDiskGeometryError (message)
Bases: kiwi.exceptions.KiwiError

156 Chapter 10. Python API

KIWI NG Documentation, Release 9.20.6

Exception raised if the disk geometry (partition table) could not be read or evaluated
against their expected geometry and capabilities.

exception kiwi.exceptions.KiwiDistributionNameError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the distribution name could not be found. The information is extracted
from the boot attribute of the XML description. If no boot attribute is present or does not
match the naming conventions the exception is raised.

exception kiwi.exceptions.KiwiError (message)
Bases: Exception

Base class to handle all known exceptions
Specific exceptions are implemented as sub classes of KiwiError
Attributes

Parameters message (string)— Exception message text

exception kiwi.exceptions.KiwiExtensionError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an extension section of the same namespace is used multiple times as
toplevel section within the extension section. Each extension must have a single toplevel
entry point qualified by its namespace

exception kiwi.exceptions.KiwiFileAccessError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if accessing a file or its metadata failed

exception kiwi.exceptions.KiwiFileNotFound (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the requested file could not be found.

exception kiwi.exceptions.KiwiFileSystemSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to build an unsupported or unspecified filesys-
tem.

exception kiwi.exceptions.KiwiFileSystemSyncError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the data sync from the system into the loop mounted filesystem image
failed.

exception kiwi.exceptions.KiwiFormatSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the requested disk format could not be created.

exception kiwi.exceptions.KiwiHelpNoCommandGiven (message)
Bases: kiwi.exceptions.KiwiError

10.1. kiwi Package 157

https://docs.python.org/3/library/exceptions.html#Exception

KIWI NG Documentation, Release 9.20.6

Exception raised if the request for the help page is executed without a command to show
the help for.

exception kiwi.exceptions.KiwiImageResizeError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the request to resize a disk image failed. Reasons could be a missing
raw disk reference or a wrong size specification.

exception kiwi.exceptions.KiwiImportDescriptionError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the XML description data and scripts could not be imported into the
root of the image.

exception kiwi.exceptions.KiwiInstallBootImageError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the required files to boot an installation image could not be found, e.g
kernel or hypervisor.

exception kiwi.exceptions.KiwiInstallMediaError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a request for an installation media is made but the system image type
is not an oem type.

exception kiwi.exceptions.KiwiInstallPhaseFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the install phase of a system prepare command has failed.

exception kiwi.exceptions.KiwiIsoLoaderError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if no isolinux loader file could be found.

exception kiwi.exceptions.KiwiIsoMetaDataError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an inconsistency in the ISO header was found such like invalid eltorito
specification or a broken path table.

exception kiwi.exceptions.KiwiIsoToolError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an iso helper tool such as isoinfo could not be found on the build
system.

exception kiwi.exceptions.KiwiKernelLookupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the search for the kernel image file failed

exception kiwi.exceptions.KiwiLiveBootImageError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to use an unsupported live iso type.

158 Chapter 10. Python API

KIWI NG Documentation, Release 9.20.6

exception kiwi.exceptions.KiwiLoadCommandUndefined (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if no command is specified for a given service on the commandline.

exception kiwi.exceptions.KiwiLogFileSetupFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the log file could not be created.

exception kiwi.exceptions.KiwiLoopSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if not enough user data to create a loop device is specified.

exception kiwi.exceptions.KiwilLuksSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if not enough user data is provided to setup the luks encryption on the
given device.

exception kiwi.exceptions.KiwiMappedDeviceError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the device to become mapped does not exist.

exception kiwi.exceptions.KiwiMountKernelFileSystemsError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a kernel filesystem such as proc or sys could not be mounted.

exception kiwi.exceptions.KiwiMountSharedDirectoryError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the host <-> image shared directory could not be mounted.

exception kiwi.exceptions.KiwiNotImplementedError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a functionality is not yet implemented.

exception kiwi.exceptions.KiwiOCIArchiveToolError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the requested OCI archive tool is not supported

exception kiwi.exceptions.KiwiPackageManagerSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to create a package manager instance for an
unsupported package manager.

exception kiwi.exceptions.KiwiPackagesDeletePhaseFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the packages deletion phase in system prepare fails.

exception kiwi.exceptions.KiwiPartitionerGptFlagError (message)
Bases: kiwi.exceptions.KiwiError

10.1. kiwi Package 159

KIWI NG Documentation, Release 9.20.6

Exception raised if an attempt was made to set an unknown partition flag for an entry in
the GPT table.

exception kiwi.exceptions.KiwiPartitionerMsDosFlagError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to set an unknown partition flag for an entry in
the MSDOS table.

exception kiwi.exceptions.KiwiPartitionerSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to create an instance of a partitioner for an
unsupporte partitioner.

exception kiwi.exceptions.KiwiPrivilegesError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if root privileges are required but not granted.

exception kiwi.exceptions.KiwiProfileNotFound (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a specified profile does not exist in the XML configuration.

exception kiwi.exceptions.KiwiPxeBootImageError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a required boot file e.g the kernel could not be found in the process
of building a pxe image.
exception kiwi.exceptions.KiwiRaidSetupError (message)

Bases: kiwi.exceptions.KiwiError

Exception raised if invalid or not enough user data is provided to create a raid array on
the specified storage device.

exception kiwi.exceptions.KiwiRepositorySetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to create an instance of a repository for an
unsupported package manager.

exception kiwi.exceptions.KiwiRequestError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a package request could not be processed by the corresponding pack-
age manager instance.

exception kiwi.exceptions.KiwiRequestedTypeError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an attempt was made to build an image for an unsupported image
type.

exception kiwi.exceptions.KiwiResizeRawDiskError (message)
Bases: kiwi.exceptions.KiwiError

160 Chapter 10. Python API

KIWI NG Documentation, Release 9.20.6

Exception raised if an attempt was made to resize the image disk to a smaller size than the
current one. Simply shrinking a disk image file is not possible without data corruption
because the partitions were setup to use the entire disk geometry as it fits into the file.
A successful shrinking operation would require the filesystems and the partition table to
be reduced which is not done by the provided simple storage resize method. In addition
without the user overwriting the disk size in the XML setup, kiwi will calculate the
minimum required size in order to store the data. Thus in almost all cases it will not be
possible to store the data in a smaller disk.

exception kiwi.exceptions.KiwiResultError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the image build result pickle information could not be created or
loaded.

exception kiwi.exceptions.KiwiRootDirExists (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the specified image root directory already exists and should not be
re-used.

exception kiwi.exceptions.KiwiRootImportError (message)
Bases: kiwi.exceptions.KiwiError

Exception is raised when something fails during the root import procedure.

exception kiwi.exceptions.KiwiRootInitCreationError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the initialization of a new image root directory has failed.

exception kiwi.exceptions.KiwiRpmDirNotRemoteError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the provided rpm-dir repository is not local

exception kiwi.exceptions.KiwiRuntimeConfigFormatError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the expected format in the yaml KIWI runtime config file does not
match

exception kiwi.exceptions.KiwiRuntimeError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a runtime check has failed.

exception kiwi.exceptions.KiwiSatSolverJobError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a sat solver job can not be done, e.g because the requested package
or collection does not exist in the registered repository metadata

exception kiwi.exceptions.KiwiSatSolverJobProblems (message)
Bases: kiwi.exceptions.KiwiError

10.1. kiwi Package 161

KIWI NG Documentation, Release 9.20.6

Exception raised if the sat solver operations returned with solver problems e.g package
conflicts

exception kiwi.exceptions.KiwiSatSolverPluginError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the python solv module failed to load. The solv module is provided by
SUSE’s rpm package python-solv and provides a python binding to the libsolv C library

exception kiwi.exceptions.KiwiSchemaImportError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the schema file could not be read by Ixml.RelaxNG.

exception kiwi.exceptions.KiwiScriptFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if a user script returned with an exit code != 0.

exception kiwi.exceptions.KiwiSetupIntermediateConfigError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the setup of the temporary image system configuration for the duration
of the build process has failed.

exception kiwi.exceptions.KiwiSizeError (message)
Bases: kiwi.exceptions.KiwiError

Exception is raised when the convertion from a given size in string format to a number.

exception kiwi.exceptions.KiwiSolverRepositorySetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the repository type is not supported for the creation of a SAT solvable

exception kiwi.exceptions.KiwiSystemDeletePackagesFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the deletion of a package has failed in the corresponding package
manager instance.

exception kiwi.exceptions.KiwiSystemInstallPackagesFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the installation of a package has failed in the corresponding package
manager instance.

exception kiwi.exceptions.KiwiSystemUpdateFailed (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the package upgrade has failed in the corresponding package manager
instance.

exception kiwi.exceptions.KiwiTargetDirectoryNotFound (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the specified target directory to store the image results was not found.

162 Chapter 10. Python API

KIWI NG Documentation, Release 9.20.6

exception kiwi.exceptions.KiwiTemplateError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the substitution of variables in a configuration file template has failed.

exception kiwi.exceptions.KiwiTypeNotFound (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if no build type was found in the XML description.

exception kiwi.exceptions.KiwiUnknownServiceName (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an unknown service name was provided on the commandline.

exception kiwi.exceptions.KiwiUriOpenError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the urllib urlopen request has failed

exception kiwi.exceptions.KiwiUriStyleUnknown (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if an unsupported URI style was used in the source definition of a repos-
itory.

exception kiwi.exceptions.KiwiUriTypeUnknown (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the protocol type of an URI is unknown in the source definition of a
repository.

exception kiwi.exceptions.KiwiValidationError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the XML validation against the schema has failed.

exception kiwi.exceptions.KiwiVhdTagError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the GUID tag is not provided in the expected format.

exception kiwi.exceptions.KiwiVolumeGroupConflict (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the requested LVM volume group already is in use on the build sys-
tem.

exception kiwi.exceptions.KiwiVolumeManagerSetupError (message)
Bases: kiwi.exceptions.KiwiError

Exception raised if the preconditions for volume mangement support are not met or an
attempt was made to create an instance of a volume manager for an unsupported volume
management system.

exception kiwi.exceptions.KiwiVolumeRootIDError (message)
Bases: kiwi.exceptions.KiwiError

10.1. kiwi Package 163

KIWI NG Documentation, Release 9.20.6

Exception raised if the root volume can not be found. This concept currently exists only
for the btrfs subvolume system.

10.1.8 kiwi. firmware Module

class kiwi.firmware.FirmWare (xml_state)

Bases: object
Implements firmware specific methods

According to the selected firmware some parameters in a disk image changes. This class
provides methods to provide firmware dependant information

. param object xml_state instance of XMLState

bios_mode ()
Check if BIOS mode is requested

Returns True or False
Return type bool

ec2_mode ()
Check if EC2 mode is requested

Returns True or False
Return type bool

efi_mode ()
Check if EFI mode is requested

Returns The requested EFI mode or None if no EFI mode requested
Return type str

get_efi_ partition_size ()
Size of EFI partition. Returns O if no such partition is needed

Returns mbsize value
Return type int

get_legacy bios_partition_size()
Size of legacy bios_grub partition if legacy BIOS mode is required. Returns 0 if no
such partition is needed

Returns mbsize value
Return type int

get_partition_table_ type ()
Provides partition table type according to architecture and firmware

Returns partition table name

Return type str

164

Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

get_prep_partition_size()
Size of Prep partition if OFW mode is requested. Returns O if no such partition is
needed

Returns mbsize value
Return type int

legacy_bios_mode ()
Check if the legacy boot from BIOS systems should be activated

Returns True or False
Return type bool

ofw_mode ()
Check if OFW mode is requested

Returns True or False
Return type bool

opal_mode ()
Check if Opal mode is requested

Returns True or False

Return type bool

10.1.9 kiwi.help Module
class kiwi.help.Help
Bases: object
Implements man page help for kiwi commands

Each kiwi command implements their own manual page, which is shown if the positional
argument ‘help’ is passed to the command.

show (command=None)
Call man to show the command specific manual page

All kiwi commands store their manual page in the section ‘8’ of the man system.
The calling process is replaced by the man process

Parameters command (st ring)— man page name

10.1. kiwi Package 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

10.1.10 kiwi.kiwi Module
kiwi.kiwi.extras (help_, version, options, doc)
Overwritten method from docopt
Shows our own usage message for -hl-help
Parameters
* help (boo1l) - indicate to show help
* version (string)— version string
* options (list)—

list of option tuples

[option (name="'name', value='value')]

Parameters doc (string) - docopt doc string
kiwi.kiwi.main ()
kiwi - main application entry point

Initializes a global log object and handles all errors of the application. Every known error
is inherited from KiwiError, everything else is passed down until the generic Exception
which is handled as unexpected error including the python backtrace

kiwi.kiwi .usage (command_usage)
Instead of the docopt way to show the usage information we provide a kiwi specific usage
information. The usage data now always consists out of:

1. the generic call kiwi-ng [global options] service <command> [<args>]

2. the command specific usage defined by the docopt string short form by default, long
form with -h | —help

3. the global options

Parameters command_usage (st ring) — usage data

10.1.11 kiwi.logger Module
class kiwi.logger.Logger (name)
Bases: logging.Logger
Extended logging facility based on Python logging
Parameters name (string)—name of the logger

getLoglevel ()
Return currently used log level

Returns log level number

166 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/logging.html#logging.Logger

KIWI NG Documentation, Release 9.20.6

Return type int

get_logfile ()
Return file path name of logfile

Returns file path
Return type str

progress (current, total, prefix, bar_length=40)
Custom progress log information. progress information is intentionally only logged

to stdout and will bypass any handlers. We don’t want this information to show up
in the log file

Parameters
* current (int) - current item
* total (int) - total number of items
* prefix (string) - prefix name
* bar_length (int) - length of progress bar

setLogLevel (level)
Set custom log level for all console handlers

Parameters level (int) - log level number

set_color_ format ()
Set color format for all console handlers

set_logfile (filename)
Set logfile handler

Parameters f£ilename (string) — logfile file path

10.1.12 kiwi.logger_color_formatter Module

class kiwi.logger_color_formatter.ColorFormatter (*args,

**kwargs)
Bases: logging.Formatter

Extended standard logging Formatter

Extended format supporting text with color metadata

Example:

ColorFormatter (message_format, '$H:SM:%S'")

format (record)
Creates a logging Formatter with support for color messages

Parameters record (tuple)—logging message record

Returns result from format_message

10.1. kiwi Package 167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/stdtypes.html#tuple

KIWI NG Documentation, Release 9.20.6

Return type str

class kiwi.logger_color_formatter.ColorMessage
Bases: object

Implements color messages for Python logging facility
Has to implement the format_message method to serve as message formatter

format_message (level, message)
Message formatter with support for embedded color sequences

The Message is allowed to contain the following color metadata:
* $SRESET, reset to no color mode
* $BOLD, bold
» $COLOR, color the following text
* SLIGHTCOLOR, light color the following text

The color of the message depends on the level and is defined in the ColorMessage
constructor

Parameters
* level (int)— color level number
* message (string) — text
Returns color message with escape sequences

Return type str

10.1.13 kiwi.logger_filter Module

class kiwi.logger_ filter.DebugFilter (name=")
Bases: logging.Filter
Extended standard debug logging Filter

filter (record)
Only messages with record level DEBUG can pass for messages with another level
an extra handler is used

Parameters record (tuple)—logging message record
Returns record.name
Return type str

class kiwi.logger_ filter.ErrorFilter (name=")
Bases: logging.Filter

Extended standard error logging Filter

168 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Filter

KIWI NG Documentation, Release 9.20.6

filter (record)
Only messages with record level DEBUG can pass for messages with another level
an extra handler is used

Parameters record (tuple)—logging message record
Returns record.name
Return type str

class kiwi.logger_filter.InfoFilter (name=")
Bases: logging.Filter

Extended standard logging Filter

filter (record)
Only messages with record level INFO and WARNING can pass for messages with
another level an extra handler is used

Parameters record (tuple)—logging message record
Returns record.name
Return type str

class kiwi.logger_ filter.LoggerSchedulerFilter (name="")
Bases: logging.Filter

Extended standard logging Filter

filter (record)
Messages from apscheduler scheduler instances are filtered out They conflict with
console progress information

Parameters record (tuple)—logging message record
Returns record.name
Return type str

class kiwi.logger_filter.WarningFilter (name="")
Bases: logging.Filter

Extended standard warning logging Filter

filter (record)
Only messages with record level WARNING can pass for messages with another
level an extra handler is used

Parameters record (tuple)—logging message record
Returns record.name

Return type str

10.1. kiwi Package 169

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

10.1.14 kiwi.mount_manager Module

class kiwi.mount_manager.MountManager (device, mountpoint=None)
Bases: object
Implements methods for mounting, umounting and mount checking

If a MountManager instance is used to mount a device the caller must care for the time
when umount needs to be called. The class does not automatically release the mounted
device, which is intentional

. param string device device node name
. param string mountpoint mountpoint directory name

bind_ mount ()
Bind mount the device to the mountpoint

is_mounted ()
Check if mounted

Returns True or False
Return type bool

mount (options=None)
Standard mount the device to the mountpoint

Parameters options (Iist)— mount options

umount ()
Umount by the mountpoint directory

If the resource is busy the call will return False
Returns True or False
Return type bool

umount_lazy ()
Umount by the mountpoint directory in lazy mode

Release the mount in any case, however the time when the mounted resource is
released by the kernel depends on when the resource enters the non busy state

10.1.15 kiwi.path Module
class kiwi.path.Path

Bases: object

Directory path helpers

static access (path, mode, **kwargs)
Check whether path can be accessed with the given mode.

Parameters

170 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

* path (st r)— The path that should be checked for access.

* mode (int) — Which access mode should be checked. This value
must be a bit-wise or of one or more of the following constants:

os.F_OK (note that this one is zero), os.X_OK, os.R_OK and
os.W_OK

* kwargs - further keyword arguments are forwarded to os.
access ()

Returns Boolean value whether this access mode is allowed
Return type bool

Raises
* ValueError — if the supplied mode is invalid

* kiwi.exceptions.KiwiFileNotFound — if the path does
not exist or is not accessible by the current user

static create (path)
Create path and all sub directories to target

Parameters path (string)— path name

static move_ to_ root (root, elements)
Change the given path elements to a new root directory

Parameters

* root (st r)—the root path to trim

* elements (1ist) - list of path names
Returns changed elements
Return type list

static rebase to_root (root, elements)
Include the root prefix for the given paths elements

Parameters

* root (st r)— the new root path

* elements (1ist) — list of path names
Returns changed elements
Return type list

static remove (path)
Delete empty path, causes an error if target is not empty

Parameters path (string)— path name

static remove_hierarchy (path)

Recursively remove an empty path and its sub directories ignore non empty or pro-
tected paths and leave them untouched

10.1. kiwi Package 171

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.access
https://docs.python.org/3/library/os.html#os.access
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

Parameters path (string)— path name

static sort_by hierarchy (path_list)
Sort given list of path names by their hierachy in the tree

Example:

result = Path.sort_by_hierarchy(['/var/lib', '/var'])

Parameters path_list (Iist) - list of path names
Returns hierachy sorted path_list
Return type list

static which (filename, alternative_lookup_paths=None, custom_env=None,

access_mode=None, root_dir=None)
Lookup file name in PATH

Parameters
e filename (string) - file base name

* alternative_lookup_paths (Ilist) — list of additional
lookup paths

e custom_env (11st)—a custom os.environ

* access_mode (int)— one of the os access modes or a combina-
tion of them (0s.R_OK, 0s.W_OK and 0s.X_OK). If the provided
access mode does not match the file is considered not existing

* root_dir (str) - the root path to look at
Returns absolute path to file or None
Return type str

static wipe (path)
Delete path and all contents

Parameters path (string)— path name

10.1.16 kiwi.privileges Module
class kiwi.privileges.Privileges
Bases: object
Implements check for root privileges

static check_for root_permissions ()
Check if we are effectively root on the system. If not an exception is thrown

Returns True or raise an Exception

Return type bool

172 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

10.1.17 kiwi.runtime checker Module

class kiwi.runtime checker.RuntimeChecker (xml_state)
Bases: object

Implements build consistency checks at runtime

The schema of an image description covers structure and syntax of the provided data. The
RuntimeChecker provides methods to perform further semantic checks which allows to
recognize potential build or boot problems early.

. param object xml_state Instance of XMLState

check_appx_naming_conventions_valid()
When building wsl images there are some naming conventions that must be fulfilled
to run the container on Microsoft Windows

check_architecture_supports_iso_firmware_setup ()
For creating ISO images a different bootloader setup is performed depending on the
configured firmware. If the firmware is set to bios, isolinux is used and that limits
the architecture to x86 only. In any other case the appliance configured bootloader is
used. This check examines if the host architecture is supported with the configured
firmware on request of an ISO image.

check boot_description_exists ()
If a kiwi initrd is used, a lookup to the specified boot description is done and fails
early if it does not exist

check_consistent_kernel_in_ boot_and_system_image ()
If a kiwi initrd is used, the kernel used to build the kiwi initrd and the kernel used
in the system image must be the same in order to avoid an inconsistent boot setup

check_container_tool_chain_installed()
When creating container images the specific tools are used in order to import and
export OCI or Docker compatible images. This check searches for those tools to be
installed in the build system and fails if it can’t find them

check_dracut_module_for disk_oem_in_package_list ()
OEM images if configured to use dracut as initrd system requires the KIWI provided
dracut-kiwi-oem-repart module to be installed at the time dracut is called. Thus this
runtime check examines if the required package is part of the package list in the
image description.

check _dracut_module_for disk_overlay in_package_list ()
Disk images configured to use a root filesystem overlay requires the KIWI provided
kiwi-overlay dracut module to be installed at the time dracut is called. Thus this
runtime check examines if the required package is part of the package list in the
image description.

check_dracut_module_for live_iso_in_package_list ()
Live ISO images uses a dracut initrd to boot and requires the KIWI provided kiwi-
live dracut module to be installed at the time dracut is called. Thus this runtime

10.1. kiwi Package 173

https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

check examines if the required package is part of the package list in the image
description.

check _dracut_module_for oem install_in_package_ 1list ()
OEM images if configured to use dracut as initrd system and configured with one of
the installiso, installstick or installpxe attributes requires the KIWI provided dracut-
kiwi-oem-dump module to be installed at the time dracut is called. Thus this run-
time check examines if the required package is part of the package list in the image
description.

check_efi_mode_for_disk_ overlay_ correctly_ setup ()
Disk images configured to use a root filesystem overlay only supports the standard
EFI mode and not secure boot. That’s because the shim setup performs changes to
the root filesystem which can not be applied during the bootloader setup at build
time because at that point the root filesystem is a read-only squashfs source.

check_ image_include_repos_publicly_ resolvable ()
Verify that all repos marked with the imageinclude attribute can be resolved into a
http based web URL

check _mediacheck installed()
If the image description enables the mediacheck attribute the required tools to run
this check must be installed on the image build host

check_minimal_required_preferences ()
Kiwi requires some of the elements of the preferences element to be present at
least in one of the preferences section. This runtime check validates <version> and
<packagemanager> are provided.

check repositories_configured ()
Verify that that there are repositories configured

check_target_directory_not_in_shared_cache (target_dir)
The target directory must be outside of the kiwi shared cache directory in order to
avoid busy mounts because kiwi bind mounts the cache directory into the image
root tree to access host caching information

Parameters target_dir (string)— path name

check_volume label used with lvm()
The optional volume label in a systemdisk setup is only effective if the LVM, logical
volume manager system is used. In any other case where the filesystem itself offers
volume management capabilities there are no extra filesystem labels which can be
applied per volume

check_volume_setup_defines_multiple_ fullsize_volumes ()
The volume size specification ‘all’ makes this volume to take the rest space available
on the system. It’s only allowed to specify one all size volume

check_volume_setup_defines_reserved_labels ()

check_volume_setup_has_no_root_definition()
The root volume in a systemdisk setup is handled in a special way. It is not allowed
to setup a custom name or mountpoint for the root volume. Therefore the size of

174

Chapter 10. Python API

KIWI NG Documentation, Release 9.20.6

the root volume can be setup via the @root volume name. This check looks up the
volume setup and searches if there is a configuration for the ‘/° mountpoint which
would cause the image build to fail

check_ xen_uniquely_setup_as_server_or_guest ()
If the image is classified to be used as Xen image, it can be either a Xen
Server(dom() or a Xen guest. The image configuration is checked if the infor-
mation uniquely identifies the image as such

10.1.18 kiwi.runtime_ config Module
class kiwi.runtime_config.RuntimeConfig
Bases: object
Implements reading of runtime configuration file:
1. ~/.config/lkiwi/config.yml
2. /etc/kiwi.yml

The KIWI runtime configuration file is a yaml formatted file containing information to
control the behavior of the tools used by KIWI.

get_bundle_compression (default=True)
Return boolean value to express if the image bundle should contain XZ compressed
image results or not.

bundle:
e compress: truelfalse

If compression of image build results is activated the size of the bundle is smaller
and the download speed increases. However the image must be uncompressed be-
fore use

If no compression is explicitly configured, the provided default value applies
Parameters default (bool) — Default value
Returns True or False
Return type bool

get_container_ compression ()
Return compression algorithm to use for compression of container images

container:
e compress: xzlnone

if no or invalid configuration data is provided, the default compression algorithm
from the Defaults class is returned

Returns A name

Return type str

10.1. kiwi Package 175

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

get_disabled_ runtime_ checks ()
Returns disabled runtime checks. Checks can be disabled with:

runtime_checks:
e disable: check container _tool chain_installed
if the provided string does not match any RuntimeChecker method it is just ignored.

get_iso_tool_category ()
Return tool category which should be used to build iso images

iso:
* tool_category: cdrtoolslxorriso

if no or invalid configuration exists the default tool category from the Defaults class
is returned

Returns A name
Return type str

get_max size_constraint ()
Returns the maximum allowed size of the built image. The value is returned in
bytes and it is specified in build_constraints element with the max_size attribute.
The value can be specified in bytes or it can be specified with m=MB or g=GB.

build_constraints:
e max_size: 700m
if no configuration exists None is returned
Returns byte value or None
Return type int

get_obs_download_server url ()
Return URL of buildservice download server in:

obs:
e download_url: ...
if no configuration exists the downloadserver from the Defaults class is returned
Returns URL type data
Return type str

get_oci_archive_tool ()
Return OCI archive tool which should be used on creation of container archives for
OCI compliant images, e.g docker

oci:
e archive_tool: umoci

if no configuration exists the default tool from the Defaults class is returned

176 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Returns A name
Return type str

get_xz_options ()
Return list of XZ compression options in:

XZ:
* options: ...
if no configuration exists None is returned
Returns

Contains list of options

['-—option=value']

Return type list

is_obs_public()
Check if the buildservice configuration is public or private in:

obs:
* public: truelfalse
if no configuration exists we assume to be public
Returns True or False

Return type bool

10.1.19 kiwi.version Module

Global version information used in kiwi and the package

10.1.20 kiwi.xml_ description Module

class kiwi.xml_description.XMLDescription (description=None,
derived_from=None,

xml_content=None)
Bases: object

Implements data management for the XML description
» XSLT Style Sheet processing to apply on this version of kiwi
* Schema Validation based on RelaxNG schema
* Loading XML data into internal data structures

Attributes

Parameters

10.1. kiwi Package 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

* description (string) - path to XML description file
* derived_from (string) - path to base XML description file
* xml_content (string)— XML description data as content string

get_extension_xml_data (namespace_name)
Return the xml etree parse result for the specified extension namespace

Parameters namespace_name (string) — name of the extension
namespace

Returns result of etree.parse
Return type object

load ()
Read XML description, pass it along to the XSLT processor, validate it against the
schema and finally pass it to the autogenerated(generateDS) parser.

Returns instance of XML toplevel domain (image)

Return type object

10.1.21 kiwi.xml state Module

class kiwi.xml_ state.XMLState (xml _data, profiles=None,

build_type=None)
Bases: object

Implements methods to get stateful information from the XML data
Parameters
* xml_data (object) — parse result from XMLDescription.load()
*» profiles (11ist) - list of used profiles
* build_type (0ob ject) — build <type> section reference

add_container_config label (label_name, value)
Adds a new label in the containerconfig section, if a label with the same name is
already defined in containerconfig it gets overwritten by this method.

Parameters
* label_ name (st r) — the string representing the label name
* value (st r) — the value of the label

add_repository (repo_source, repo_type, repo_alias,
repo_prio, repo_imageinclude=False,

repo_package_gpgcheck=None)
Add a new repository section at the end of the list

Parameters

* repo_source (string) —repository URI

178 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

* repo_type (string) - type name defined by schema
* repo_alias (string)— alias name

* repo_prio (string) — priority number, package manager spe-
cific

* repo_imageinclude (boolean) — setup repository inside of
the image

* repo_package_gpgcheck (boolean) - enable/disable pack-
age gpg checks

copy_bootdelete_packages (farget_state)
Copy packages marked as bootdelete to the packages type=delete section in the
target xml state

Parameters target_state (ob ject)— XMLState instance

copy_bootincluded_ archives (farget_state)
Copy archives marked as bootinclude to the packages type=bootstrap section in the
target xml state

Parameters target_state (ob ject)— XMLState instance

copy_bootincluded packages (farget_state)
Copy packages marked as bootinclude to the packages type=image (or
type=bootstrap if no type=image was found) section in the target xml state. The
package will also be removed from the packages type=delete section in the target
xml state if present there

Parameters target_state (ob ject)— XMLState instance

copy_build_type_attributes (attribute_names, target_state)
Copy specified attributes from this build type section to the target xml state build
type section

Parameters
* attribute_names (I ist)— type section attributes
* target_state (ob ject)— XMLState instance

copy_displayname (farget_state)
Copy image displayname from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

copy_drivers_sections (farget_state)
Copy drivers sections from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

copy_machine_section (farget_state)
Copy machine sections from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

10.1. kiwi Package 179

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

copy_name (farget_state)
Copy image name from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

copy_oemconfig section (target_state)
Copy oemconfig sections from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

copy_preferences_subsections (section_names, target_state)
Copy subsections of the preferences sections, matching given section names, from
this xml state to the target xml state

Parameters
* section_names (11ist) — preferences subsection names
* target_state (ob ject)— XMLState instance

copy_repository_sections (target_state, wipe=False)
Copy repository sections from this xml state to the target xml state

Parameters
* target_state (ob ject)— XMLState instance
* wipe (bool) — delete all repos in target prior to copy

copy_strip_sections (target_state)
Copy strip sections from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

copy_systemdisk_section (farget_state)
Copy systemdisk sections from this xml state to the target xml state

Parameters target_state (ob ject)— XMLState instance

delete_repository sections ()
Delete all repository sections matching configured profiles

delete_repository_sections_used for build()
Delete all repository sections used to build the image matching configured profiles

get_bootstrap_ archives ()
List of archive names from the type="bootstrap” packages section(s)

Returns archive names
Return type list

get_bootstrap collection_type ()
Collection type for packages sections matching type="bootstrap”

Returns collection type name

Return type str

180 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

get_bootstrap collections ()
List of collection names from the packages sections matching type="bootstrap”

Returns collection names
Return type list

get_bootstrap_packages (plus_packages=None)
List of package names from the type="bootstrap” packages section(s)

The list gets the selected package manager appended if there is a request to install
packages inside of the image via a chroot operation

Parameters plus_packages (11ist) — list of additional packages
Returns package names
Return type list

get_bootstrap packages_sections ()
List of packages sections matching type="bootstrap”

Returns list of <packages> section reference(s)
Return type list

get_bootstrap products ()
List of product names from the packages sections matching type="bootstrap”

Returns product names
Return type list

get_build_ type_containerconfig_section ()
First containerconfig section from the build type section

Returns <containerconfig> section reference
Return type xml_parse::containerconfig

get_build type format_options ()
Disk format options returned as a dictionary

Returns format options
Return type dict

get_build_type_machine_section ()
First machine section from the build type section

Returns <machine> section reference
Return type xml_parse::machine

get_build_type_name ()
Default build type name

Returns Content of image attribute from build type

Return type str

10.1. kiwi Package 181

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

get_build type_oemconfig section ()
First oemconfig section from the build type section

Returns <oemconfig> section reference
Return type xml_parse::oemconfig

get_build_type_size (include_unpartitioned=False)
Size information from the build type section. If no unit is set the value is treated as
mbytes

Parameters include_unpartitioned (bool) - sets if the unparti-
tioned area should be included in the computed size or not

Returns mbytes
Return type int

get_build_ type_spare part_f£fs_attributes ()
Build type specific list of filesystem attributes applied to the spare partition.

Returns list of strings or empty list
Return type list

get_build_type_ spare_ part_size()
Size information for the spare_part size from the build type. If no unit is set the
value is treated as mbytes

Returns mbytes
Return type int

get_build_type_system_disk_section()
First system disk section from the build type section

Returns <systemdisk> section reference
Return type xml_parse::systemdisk

get_build_type_unpartitioned_bytes ()
Size of the unpartitioned area for image in megabytes

Returns mbytes
Return type int

get_build_type_vagrant_config section/|()
First vagrantconfig section from the build type section

Returns <vagrantconfig> section reference
Return type xml_parse::vagrantconfig

get_build_type_vmconfig entries|()
List of vmconfig-entry section values from the first machine section in the build
type section

Returns <vmconfig_entry> section reference(s)

182 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

KIWI NG Documentation, Release 9.20.6

Return type list

get_build_type_vmdisk_section ()
First vindisk section from the first machine section in the build type section

Returns <vmdisk> section reference
Return type xml_parse::vmdisk

get_build_type vmdvd_section ()
First vimdvd section from the first machine section in the build type section

Returns <vmdvd> section reference
Return type xml_parse::vmdvd

get_build_type vmnic_entries /()
vmnic section(s) from the first machine section in the build type section

Returns list of <vmnic> section reference(s)
Return type list

get_collection_type (section_type='image')
Collection type from packages sections matching given section type.

If no collection type is specified the default collection type is set to: onlyRequired

Parameters section_type (string) — type name from packages
section

Returns collection type name
Return type str

get_collections (section_type='image')
List of collection names from the packages sections matching type=section_type
and type=build_type

Returns collection names
Return type list

get_container_ config()
Dictionary of containerconfig information

Takes attributes and subsection data from the selected <containerconfig> section
and stores it in a dictionary

get_derived_from_image_uri ()
Uri object of derived image if configured

Specific image types can be based on a master image. This method returns the
location of this image when configured in the XML description

Returns Instance of Uri

Return type object

10.1. kiwi Package 183

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

get_description_section ()
The description section

Returns description_type tuple providing the elements author contact and
specification

Return type tuple

get_disk_start_sector()
First disk sector number to be used by the first disk partition.

Returns number
Return type int

get_distribution_name_from boot_attribute ()
Extract the distribution name from the boot attribute of the build type section.

If no boot attribute is configured or the contents does not match the kiwi defined
naming schema for boot image descriptions, an exception is thrown

Returns lowercase distribution name
Return type str

get_drivers_list ()
List of driver names from all drivers sections matching configured profiles

Returns driver names
Return type list

get_fs_create_option_list ()
List of root filesystem creation options

The list contains elements with the information from the fscreateoptions attribute
string that got split into its substring components

Returns list with create options
Return type list

get_fs_mount_option_list ()
List of root filesystem mount options

The list contains one element with the information from the fsmountoptions at-
tribute. The value there is passed along to the -0 mount option

Returns max one element list with mount option string
Return type list

get_image_packages_sections ()
List of packages sections matching type="image”

Returns list of <packages> section reference(s)

Return type list

184 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

get_image_version ()
Image version from preferences section.

Multiple occurences of version in preferences sections are not forbidden, however
only the first version found defines the final image version

Returns Content of <version> section
Return type str

get_initrd system()
Name of initrd system to use

Depending on the image type a specific initrd system is either pre selected or free
of choice according to the XML type setup

Returns dracut, kiwi or None
Return type str

get_locale()
Gets list of locale names if configured. Takes the first locale setup from the existing
preferences sections into account.

Returns List of names or None
Return type listINone

get_oemconfig oem _multipath_scan{()
State value to activate multipath maps. Returns a boolean value if specified or None

Returns Content of <oem-multipath-scan> section value
Return type bool

get_oemconfig swap_mbytes ()
Return swapsize in MB if requested or None

Operates on the value of oem-swap and if set to true returns the given size or the
default value.

Returns Content of <oem-swapsize> section value or default
Return type int

get_package_manager ()
Get configured package manager from selected preferences section

Returns Content of the <packagemanager> section
Return type str

get_package_sections (packages_sections)
List of package sections from the given packages sections. Each list element con-
tains a tuple with the <package> section reference and the <packages> section this
package belongs to

If a package entry specfies an architecture, it is only taken if the host architecture
matches the configured architecture

10.1. kiwi Package 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Parameters packages_sections (1ist)— <packages>
Returns

Contains list of package_type tuples

[package_type (packages_section=object, package_
—section=object)]

Return type list

get_packages_sections (section_types)
List of packages sections matching given section type(s)

Parameters section_types (1ist) — type name(s) from packages
sections

Returns list of <packages> section reference(s)
Return type list

get_preferences_sections ()
All preferences sections for the selected profiles

Returns list of <preferences> section reference(s)
Return type list

get_products (section_type='"image')
List of product names from the packages sections matching type=section_type and
type=build_type

Parameters section_type (string) — type name from packages
section

Returns product names
Return type list

get_repository_sections ()
List of all repository sections matching configured profiles

Returns <repository> section reference(s)
Return type list

get_repository_sections_used_for_build()
List of all repositorys sections used to build the image and matching configured
profiles.

Returns <repository> section reference(s)
Return type list

get_repository_sections_used_in_image ()
List of all repositorys sections to be configured in the resulting image matching
configured profiles.

Returns <repository> section reference(s)

186 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

Return type list

get_root_partition_uuid()
Return preserved PARTUUID

get_rpm_ check_signatures ()
Gets the rpm-check-signatures configuration flag. Returns False if not present.

Returns True or False
Return type bool

get_rpm_ excludedocs ()
Gets the rpm-excludedocs configuration flag. Returns False if not present.

Returns True or False
Return type bool

get_rpm locale()
Gets list of locale names to filter out by rpm if rpm-locale-filtering is switched on
the the list always contains: [POSIX, C, C.UTF-8] and is extended by the optionaly
configured locale

Returns List of names or None
Return type listINone

get_rpm locale_filtering()
Gets the rpm-locale-filtering configuration flag. Returns False if not present.

Returns True or False
Return type bool

get_strip_ files_to_delete()
Items to delete from strip section

Returns item names
Return type list

get_strip_ libraries_to_keep ()
Libraries to keep from strip section

Returns librarie names
Return type list

get_strip_ list (section_type)
List of strip names matching the given section type and profiles

Parameters section_type (string) — type name from packages
section

Returns strip names

Return type list

10.1. kiwi Package 187

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

get_strip tools_to_keep ()
Tools to keep from strip section

Returns tool names
Return type list

get_system_archives ()
List of archive names from the packages sections matching type="image” and
type=build_type

Returns archive names
Return type list

get_system_collection_type ()
Collection type for packages sections matching type="image”

Returns collection type name
Return type str

get_system_collections ()
List of collection names from the packages sections matching type="image”

Returns collection names
Return type list

get_system_ignore_packages ()
List of ignore package names from the packages sections matching type="image”
and type=Dbuild_type

Returns package names
Return type list

get_system packages ()
List of package names from the packages sections matching type="image” and
type=build_type

Returns package names
Return type list

get_system products ()
List of product names from the packages sections matching type="image”

Returns product names
Return type list

get_to_become_deleted_packages (force=True)
List of package names from the type="delete” or type="uninstall” packages sec-
tion(s)

Parameters force (bool) — return “delete” type if True, “uninstall”
type otherwise

188

Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

Returns package names
Return type list

get_user_groups (user_name)
List of group names matching specified user

Each entry in the list is the name of a group that the specified user belongs to. The
first item in the list is the login or primary group. The list will be empty if no groups
are specified in the description file.

Returns groups data for the given user
Return type list

get_users|()
List of configured users.

Each entry in the list is a single xml_parse::user instance.
Returns list of <user> section reference(s)
Return type list

get_users_sections ()
All users sections for the selected profiles

Returns list of <users> section reference(s)
Return type list

get_vagrant_config virtualbox guest_additions ()
Attribute virtualbox_guest_additions_present from the first vagrantconfig section.

Returns <vagrantconfig virtualbox_guest_additions_present=>
value

Return type bool

get_volume_group_name ()
Volume group name from selected <systemdisk> section

Returns volume group name
Return type str

get_volume_management ()
Provides information which volume management system is used

Returns name of volume manager
Return type str

get_volumes ()
List of configured systemdisk volumes.

Each entry in the list is a tuple with the following information

e name: name of the volume

10.1. kiwi Package 189

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

¢ size: size of the volume

* realpath: system path to lookup volume data. If no mountpoint is set the vol-
ume name is used as data path.

* mountpoint: volume mount point and volume data path
* fullsize: takes all space TruelFalse

« attributes: list of volume attributes handled via chattr

Returns

Contains list of volume_type tuples

[
volume_type (

name=volume_name,
size=volume_size,
realpath=path,
mountpoint=path,
fullsize=True,
label=volume_label,
attributes=['no-copy-on-write']

Return type list

is_xen_guest ()
Check if build type setup specifies a Xen Guest (domX) The check is based on the
architecture, the firmware and xen_loader configuration values:

* We only support Xen setup on the x86_64 architecture

» Firmware pointing to ec2 means the image is targeted to run in Amazon EC2
which is a Xen guest

* Machine setup with a xen_loader attribute also indicates a Xen guest target

Returns True or False
Return type bool
is xen_ server ()
Check if build type domain setup specifies a Xen Server (dom0)
Returns True or False
Return type bool

package_matches_host_architecture (package)
Tests if the given package section is applicable for the current host architecture. If
no architecture is specified within the section it is considered as a match returning
True.

190 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

Note: The XML section pointer must provide an arch attribute
Parameters section — XML section object
Returns True or False
Return type bool

profile_matches_host_architecture (profile)
Tests if the given profile section is applicable for the current host architecture. If
no architecture is specified within the section it is considered as a match returning
True.

Note: The XML section pointer must provide an arch attribute
Parameters section — XML section object
Returns True or False
Return type bool

set_container_config tag(fag)
Set new tag name in containerconfig section

In order to set a new tag value an existing containerconfig and tag setup is required
Parameters tag (string)—tag name

set_derived_from_ image_uri (uri)
Set derived_from attribute to a new value

In order to set a new value the derived_from attribute must be already present in the
image configuration

Parameters uri (string)— URI

set_repository (repo_source, repo_type, repo_alias,
repo_prio, repo_imageinclude=False,

repo_package_gpgcheck=None)
Overwrite repository data of the first repository

Parameters
* repo_source (string) —repository URI
* repo_type (string) - type name defined by schema
* repo_alias (string) — alias name

* repo_prio (string) — priority number, package manager spe-
cific

* repo_imageinclude (boolean) — setup repository inside of
the image

* repo_package_gpgcheck (boolean) - enable/disable pack-
age gpg checks

set_root_partition_uuid (uuid)
Store PARTUUID provided in uuid as state information

10.1. kiwi Package 191

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

Parameters uuid (st ring) — PARTUUID

10.1.22 Module Contents

10.2 kiwi.archive Package

10.2.1 Submodules

10.2.2 kiwi.archive.cpio Module

class kiwi.archive.cpio.ArchiveCpio (filename)
Bases: object
Extraction/Creation of cpio archives

Parameters filename (string) — filename to use for archive extraction
or creation

create (source_dir, exclude=None)
Create cpio archive

Parameters
* source_dir (string) - data source directory
e exclude (11st)— list of excluded items

extract (dest_dir)
Extract cpio archive contents

Parameters dest_dir (string) — target data directory

10.2.3 kiwi.archive.tar Module

class kiwi.archive.tar.ArchiveTar (filename, create_from_file_list=True,

file_list=None)
Bases: object

Extraction/Creation of tar archives

The tarfile python module is not used by that class, since it does not provide support for
some relevant features in comparison to the GNU tar command (e.g. numeric-owner).
Moreover tarfile lacks support for xz compression under Python v2.7.

Parameters

 filename (string) — filename to use for archive extraction or
creation

* create_from file list (bool) — use file list not entire di-
rectory to create the archive

192 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

e file_1list (I1ist)- listof files and directorie names to archive

append_files (source_dir, files_to_append, options=None)
Append files to an already existing uncompressed tar archive

Parameters
* source_dir (string) - data source directory
» files_to_append (Iist)— list of items to append
* options (I1ist)— custom options

create (source_dir, exclude=None, options=None)
Create uncompressed tar archive

Parameters
* source_dir (string)— data source directory
* exclude (11ist) - list of excluded items
* options (I1ist)— custom creation options

create_gnu_gzip_ compressed (source_dir, exclude=None)
Create gzip compressed tar archive

Parameters
* source_dir (string)— data source directory
e exclude (11st) - list of excluded items

create_xz_compressed (source_dir, exclude=None, options=None,
xz_options=None)
Create XZ compressed tar archive

Parameters
* source_dir (string) - data source directory
* exclude (11ist) - list of excluded items
* options (I1st)— custom tar creation options

* xz_options (11ist)— custom Xz compression options

extract (dest_dir)
Extract tar archive contents

Parameters dest_dir (string) — target data directory

10.2. kiwi.archive Package 193

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

10.2.4 Module Contents

10.3 kiwi.boot.image Package

10.3.1 Submodules

10.3.2 kiwi.boot.image .base Module

class kiwi.boot.image.base.BootImageBase (xml_state, target_dir,

root_dir=None, sign-

ing_keys=None)
Bases: object

Base class for boot image(initrd) task
Parameters
* xml_state (object) - Instance of XMLState
* target_dir (string) - target dir to store the initrd
* root_dir (string)— system image root directory
* signing_keys (11ist) — list of package signing keys

create_ initrd (mbrid=None, basename=None, install_initrd=Fualse)
Implements creation of the initrd

Parameters
* mbrid (ob ject) — instance of Imageldentifier
* basename (string) — base initrd file name
e install initrd (bool) - installation media initrd
Implementation in specialized boot image class

disable_cleanup ()
Deactivate cleanup(deletion) of boot root directory

dump (filename)
Pickle dump this instance to a file. If the object dump is requested the destructor
code will also be disabled in order to preserve the generated data

Parameters filename (string) — file path name

enable_cleanup ()
Activate cleanup(deletion) of boot root directory

get_boot_description_directory ()
Provide path to the boot image XML description

Returns path name

Return type str

194

Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

get_boot_names ()
Provides kernel and initrd names for the boot image

Returns

Contains boot_names_type tuple

boot_names_type (
kernel_name='INSTALLED KERNEL',
initrd_name='DRACUT_OUTPUT_NAME'

Return type tuple

import_system_description_elements ()
Copy information from the system image relevant to create the boot image to the
boot image state XML description

include_file (filename, install_media=False)
Include file to boot image

For kiwi boot images this is done by adding package or archive definitions with the
bootinclude attribute. Thus for kiwi boot images the method is a noop

Parameters
* filename (string) — file path name
e install media (bool) — include also for installation media
initrd
include module (module, install_media=False)

Include module to boot image

For kiwi boot no modules configuration is required. Thus in such a case this method
1S a noop.

Parameters
* module (string)- module to include
e install media (bool) - include the module for install initrds

is_prepared()
Check if initrd system is prepared.

Returns True or False
Return type bool

load _boot_xml_description|()
Load the boot image description referenced by the system image description boot
attribute

omit_module (module, install_media=False)
Omit module to boot image

10.3. kiwi.boot.image Package 195

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

For kiwi boot no modules configuration is required. Thus in such a case this method
is a noop.

Parameters
e module (string) - module to omit
* install_media (bool)— omit the module for install initrds

post_init ()
Post initialization method

Implementation in specialized boot image class

prepare ()
Prepare new root system to create initrd from. Implementation is only needed if
there is no other root system available

Implementation in specialized boot image class

write_system_config file (config, config_file=None)
Writes relevant boot image configuration into configuration file that will be part of
the system image.

This is used to configure any further boot image rebuilds after deployment. For
instance, initrds recreated on kernel update.

For kiwi boot no specific configuration is required for initrds recreation, thus this
method is a noop in that case.

Parameters
* config (dict) — dictonary including configuration parameters

* config file (string) - configuration file to write

10.3.3 kiwi.boot.image.dracut Module

class kiwi.boot.image.dracut.BootImageDracut (xml_state,
target_dir,
root_dir=None,
sign-
ing_keys=None)
Bases: kiwi.boot.image.base.BootImageBase

Implements creation of dracut boot(initrd) images.

create_initrd (mbrid=None, basename=None, install_initrd=False)
Create kiwi .profile environment to be included in dracut initrd. Call dracut as
chroot operation to create the initrd and move the result into the image build target
directory

Parameters

* mbrid (object) — unused

196 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

* basename (string)— base initrd file name
e install initrd (bool) - installation media initrd

include_file (filename, install_media=False)
Include file to dracut boot image

Parameters filename (string) — file path name

include module (module, install_ media=False)
Include module to dracut boot image

Parameters
* module (string)- module to include
e install media (bool) - include the module for install initrds

omit_module (module, install_media=False)
Omit module to dracut boot image

Parameters
* module (string)- module to omit
* install_media (bool)— omit the module for install initrds

post_init ()
Post initialization method

Initialize empty list of dracut caller options

prepare ()
Prepare dracut caller environment

* Setup machine_id(s) to be generic and rebuild by dracut on boot

write_system_config_ file (config, config_file=None)
Writes modules configuration into a dracut configuration file.

Parameters

* config (dict) — a dictionary containing the modules to add and
omit

* conf_file (string)— configuration file to write

10.3.4 kiwi.boot.image.builtin_kiwi Module

class kiwi.boot.image.builtin_kiwi.BootImageKiwi (xml_state,
target_dir,
root_dir=None,
sign-
ing_keys=None)
Bases: kiwi.boot.image.base.BootImageBase

Implements preparation and creation of kiwi boot(initrd) images

10.3. kiwi.boot.image Package 197

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

The kiwi initrd is a customized first boot initrd which allows to control the first boot an
appliance. The kiwi initrd replaces itself after first boot by the result of dracut.

create_initrd (mbrid=None, basename=None, install_initrd=Fualse)
Create initrd from prepared boot system tree and compress the result

Parameters
* mbrid (ob ject) — instance of Imageldentifier
* basename (string)— base initrd file name
* install_initrd (bool) - installation media initrd

post_init ()
Post initialization method

Creates custom directory to prepare the boot image root filesystem which is a sep-
arate image to create the initrd from

prepare ()
Prepare new root system suitable to create a kiwi initrd from it

10.3.5 Module Contents

class kiwi.boot.image.BootImage (xmi_state, target_dir, root_dir=None,

signing_keys=None)
Bases: object

BootImge Factory
Parameters
* xml state (object) - Instance of XMLState
* target_dir (string) - target dir to store the initrd
* root_dir (string) - system image root directory

* signing_keys (1ist) - list of package signing keys

198 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

10.4 kiwi.bootloader.config Package

10.4.1 Submodules

10.4.2 kiwi.bootloader.config.base Module

class kiwi.bootloader.config.base.BootLoaderConfigBase (xml_state,
root_dir,
boot_dir=None,
cus-

tom_args=None)
Bases: object

Base class for bootloader configuration
Parameters
e xml_ state (object) —instance of XMLState
* root_dir (string) —root directory path name
* custom_args (dict) — custom bootloader arguments dictionary

create_efi_path (in_sub_dir="boot/efi’)
Create standard EFI boot directory structure

Parameters in_sub_dir (string) - toplevel directory
Returns Full qualified EFI boot path
Return type str

failsafe_boot_entry requested()
Check if a failsafe boot entry is requested

Returns True or False
Return type bool

get_boot_cmdline (uuid=None)
Boot commandline arguments passed to the kernel

Parameters uuid (string) - boot device UUID
Returns kernel boot arguments
Return type str

get_boot_path (target="disk')
Bootloader lookup path on boot device

If the bootloader reads the data it needs to boot, it does that from the configured
boot device. Depending if that device is an extra boot partition or the root partition
or or based on a non standard filesystem like a btrfs snapshot, the path name varies

Parameters target (string)— target name: diskliso

10.4. kiwi.bootloader.config Package 199

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Returns path name
Return type str

get_boot_theme ()
Bootloader Theme name

Returns theme name
Return type str

get_boot_timeout_seconds ()
Bootloader timeout in seconds

If no timeout is specified the default timeout applies
Returns timeout seconds
Return type int

get_continue_on_timeout ()
Check if the boot should continue after boot timeout or not

Returns True or False
Return type bool

get_gfxmode (target)
Graphics mode according to bootloader target

Bootloaders which support a graphics mode can be configured to run graphics in
a specific resolution and colors. There is no standard for this setup which causes
kiwi to create a mapping from the kernel vesa mode number to the corresponding
bootloader graphics mode setup

Parameters target (string) - bootloader name
Returns boot graphics mode
Return type str

get_install_image_boot_default (loader=None)
Provide the default boot menu entry identifier for install images

The install image can be configured to provide more than one boot menu entry.
Menu entries configured are:

e [0] Boot From Hard Disk
e [1] Install
 [2] Failsafe Install

The installboot attribute controlls which of these are used by default. If not specified
the boot from hard disk entry will be the default. Depending on the specified loader
type either an entry number or name will be returned.

Parameters loader (string) - bootloader name

Returns menu name or id

200 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Return type str

get_menu_entry install_title()
Prefixed menu entry title for install images

If no displayname is specified in the image description, the menu title is constructed
from the image name

Returns title text
Return type str

get_menu_entry_title (plain=False)
Prefixed menu entry title

If no displayname is specified in the image description, the menu title is constructed
from the image name and build type

Parameters plain (bool)— indicate to add built type into title text
Returns title text
Return type str

post_init (custom_args)
Post initialization method

Store custom arguments by default
Parameters custom_args (dict) — custom bootloader arguments

quote_title (name)
Quote special characters in the title name

Not all characters can be displayed correctly in the bootloader environment. There-
fore a quoting is required

Parameters name (string) — title name
Returns quoted text
Return type str

setup_disk_boot_images (boot_uuid, lookup_path=None)
Create bootloader images for disk boot

Some bootloaders requires to build a boot image the bootloader can load from a
specific offset address or from a standardized path on a filesystem.

Parameters
* boot_uuid (string)—boot device UUID
* lookup_path (string)— custom module lookup path
Implementation in specialized bootloader class required

setup_disk_image_config (boot_uuid, root_uuid, hypervisor, kernel, ini-

trd, boot_options={})
Create boot config file to boot from disk.

10.4. kiwi.bootloader.config Package 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

KIWI NG Documentation, Release 9.20.6

Parameters
* boot_uuid (string) - boot device UUID
e root_uuid (string)-root device UUID
* hypervisor (st ring) — hypervisor name
* kernel (string) - kernel name
* initrd (string) - initrd name

* boot_options (dict) — custom options dictionary required to
setup the bootloader. The scope of the options covers all informa-
tion needed to setup and configure the bootloader and gets effective
in the individual implementation. boot_options should not be mixed
up with commandline options used at boot time. This information
is provided from the get_*_cmdline methods. The contents of the
dictionary can vary between bootloaders or even not be needed

Implementation in specialized bootloader class required

setup_install_boot_images (mbrid, lookup_path=None)
Create bootloader images for ISO boot an install media

Parameters
* mbrid (string)— mbrid file name on boot device
* lookup_path (string) — custom module lookup path
Implementation in specialized bootloader class required

setup_install_image_config (mbrid, hypervisor, kernel, initrd)
Create boot config file to boot from install media in EFI mode.

Parameters
* mbrid (string)— mbrid file name on boot device
* hypervisor (string)—hypervisor name
* kernel (string) - kernel name
e initrd (string) - initrd name
Implementation in specialized bootloader class required

setup_live_boot_images (mbrid, lookup_path=None)
Create bootloader images for ISO boot a live ISO image

Parameters
* mbrid (string)— mbrid file name on boot device
* lookup_path (string)— custom module lookup path

Implementation in specialized bootloader class required

202 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

setup_live_image_config (mbrid, hypervisor, kernel, initrd)
Create boot config file to boot live ISO image in EFI mode.

Parameters
* mbrid (string)— mbrid file name on boot device
* hypervisor (string) — hypervisor name
* kernel (string) - kernel name
e initrd (string) - initrd name
Implementation in specialized bootloader class required

setup_sysconfig bootloader ()

Create or update etc/sysconfig/bootloader by parameters required according to the
bootloader setup

Implementation in specialized bootloader class required

write ()
Write config data to config file.

Implementation in specialized bootloader class required

write_meta_data (root_uuid=None, boot_options="")
Write bootloader setup meta data files

Parameters

* root_uuid (string)—rootdevice UUID
* boot_options (string)— kernel options as string

Implementation in specialized bootloader class optional

10.4.3 kiwi.bootloader.config.grub2 Module

class kiwi.bootloader.config.grub2.BootLoaderConfigGrub2 (xmli_state,
root_dir,
boot_dir=None,
cus-

tom_args=None)
Bases: kiwi.bootloader.config.base.BootLoaderConfigBase

grub?2 bootloader configuration.

post_init (custom_args)
grub?2 post initialization method

Parameters custom_args (dict)— Contains grub config arguments

{'grub_directory_name': 'grub|grub2'}

10.4. kiwi.bootloader.config Package 203

https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

setup_disk_boot_images (boot_uuid, lookup_path=None)
Create/Provide grub2 boot images and metadata

In order to boot from the disk grub2 modules, images and theme data needs to be
created and provided at the correct place in the filesystem

Parameters
* boot_uuid (string) - boot device UUID
* lookup_path (string)— custom module lookup path

setup_disk_image_config (boot_uuid=None, root_uuid=None, hyper-
visor=None, kernel=None, initrd=None,

boot_options={})
Create grub2 config file to boot from disk using grub2-mkconfig

Parameters
* boot_uuid (string)— unused
* root_uuid (string)—unused
* hypervisor (string)— unused
* kernel (string) - unused
* initrd (string) - unused
* boot_options (dict) -

options dictionary that has to contain the root and boot device and optional volume
configuration. KIWI has to mount the system prior to run grub2-mkconfig.

{

'root_device': string,

'boot_device': string,

'efi_device': string,

'system_volumes': volume_manager_instance.get_volumes ()

setup_install_boot_images (mbrid, lookup_path=None)
Create/Provide grub2 boot images and metadata

In order to boot from the ISO grub2 modules, images and theme data needs to be
created and provided at the correct place on the iso filesystem

Parameters
* mbrid (string)— mbrid file name on boot device
* lookup_path (string)— custom module lookup path
setup_install_image_config (mbrid, hypervisor='xen.gz', ker-
nel="linux', initrd="initrd')
Create grub2 config file to boot from an ISO install image

Parameters

204 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

mbrid (st ring)— mbrid file name on boot device
* hypervisor (string)— hypervisor name

* kernel (string) - kernel name

* initrd (string) - initrd name

setup_live_boot_images (mbrid, lookup_path=None)
Create/Provide grub2 boot images and metadata

Calls setup_install_boot_images because no different action required
setup_live_image_config (mbrid, hypervisor="xen.gz', kernel="linux', ini-
trd="initrd")

Create grub2 config file to boot a live media ISO image
Parameters
* mbrid (string)— mbrid file name on boot device
* hypervisor (string)— hypervisor name
* kernel (string) - kernel name
* initrd (string) - initrd name

write ()
Write bootloader configuration

 writes grub.cfg template by KIWI if template system is used
* copies grub config file to alternative boot path for EFI systems in fallback mode
* creates an embedded fat efi image for EFI ISO boot

write_meta_data (roof_uuid=None, boot_options="")
Write bootloader setup meta data files

* cmdline arguments initialization
* etc/default/grub setup file

* etc/sysconfig/bootloader

Parameters
e root_uuid (string)—rootdevice UUID
* boot_options (string) —kernel options as string

* iso_boot (bool) - indicate target is an ISO

10.4. kiwi.bootloader.config Package 205

https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

10.4.4 kiwi.bootloader.config.isolinux Module

class kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux (xml_state,

Bases: kiwi.bootloader.config.base.BootLoaderConfigBase
isolinux bootloader configuration.

post_init (custom_args)
isolinux post initialization method

Parameters custom_args (dict) — custom isolinux config argu-
ments

setup_install_boot_images (mbrid, lookup_path=None)
Provide isolinux boot metadata

No extra boot images must be created for isolinux
Parameters
* mbrid (string) - unused
* lookup_path (string)—unused
setup_install_image_config (mbrid, hypervisor='"xen.gz', ker-
nel="linux', initrd="initrd")
Create isolinux.cfg in memory from a template suitable to boot from an ISO image
in BIOS boot mode
Parameters
* mbrid (string)— mbrid file name on boot device
* hypervisor (string) — hypervisor name
* kernel (string) - kernel name
e initrd (string) - initrd name

setup_live_boot_images (mbrid, lookup_path=None)
Provide isolinux boot metadata

No extra boot images must be created for isolinux
Parameters
e mbrid (string)— unused
* lookup_path (string)— unused
setup_live_image_config (mbrid, hypervisor="xen.gz', kernel="linux', ini-
trd="initrd")

Create isolinux.cfg in memory from a template suitable to boot a live system from
an ISO image in BIOS boot mode

206 Chapter 10. Python API

root_dir,
boot_dir=Non
cus-
tom_args=Nor

https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

Parameters
* mbrid (string)— mbrid file name on boot device
* hypervisor (string)—hypervisor name
* kernel (string) - kernel name
* initrd (string) - initrd name

write ()
Write isolinux.cfg and isolinux.msg file

10.4.5 kiwi.bootloader.config.zipl Module

class kiwi.bootloader.config.zipl.BootLoaderConfigZipl (xml_state,
root_dir,
boot_dir=None,
cus-
tom_args=None)
Bases: kiwi.bootloader.config.base.BootLoaderConfigBase
zipl bootloader configuration.

post_init (custom_args)
zipl post initialization method

Parameters custom_args (dict)— Contains zipl config arguments

{'targetbase': 'device_name'}

setup_disk_boot_images (boot_uuid, lookup_path=None)
On s390 no bootloader images needs to be created

Thus this method does nothing
Parameters
e boot_uuid (string) - boot device UUID
* lookup_path (string) - custom module lookup path

setup_disk_image_config (boot_uuid=None, root_uuid=None, hyper-
visor=None, kernel="image’, initrd="initrd’,

boot_options={})
Create the zipl config in memory from a template suitable to boot from a disk image.

Parameters
* boot_uuid (string)— unused
e root_uuid (string)— unused
* hypervisor (string)— unused

* kernel (string) - kernel name

10.4. kiwi.bootloader.config Package 207

https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

* initrd (string) - initrd name
* boot_options (dict)— unused

write ()
Write zipl config file

10.4.6 Module Contents

class kiwi.bootloader.config.BootLoaderConfig (name, xml_state,
root_dir,
boot_dir=None,
cus-

tom_args=None)
Bases: object

BootLoaderConfig factory
Parameters
* name (string) - bootloader name
e xml_state (object) —instance of XMLState
* root_dir (string)—root directory path name

* custom_args (dict) — custom bootloader config arguments dic-
tionary

10.5 kiwi.bootloader.install Package

10.5.1 Submodules

10.5.2 kiwi.bootloader.install.base Module

class kiwi.bootloader.install.base.BootLoaderInstallBase (root_dir,
de-
vice_provider,
cus-

tom_args=None)
Bases: object

Base class for bootloader installation on device
Parameters
* root_dir (string) —root directory path name
* device_provider (object) —instance of DeviceProvider

* custom_args (dict)— custom arguments dictionary

208 Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

install ()
Istall bootloader on self.device

Implementation in specialized bootloader install class required

install_ required()
Check if bootloader needs to be installed

Implementation in specialized bootloader install class required

post_init (custom_args)
Post initialization method

Store custom arguments by default

Parameters custom_args (dict) — custom bootloader arguments

10.5.3 kiwi.bootloader.install.grub2 Module

class kiwi.bootloader.install.grub2.BootLoaderInstallGrub2 (root _dir,
de-
vice_provider,
cus-

tom_args=None)
Bases: kiwi.bootloader.install.base.BootLoaderInstallBase

grub2 bootloader installation

install ()
Install bootloader on disk device

install_ required()
Check if grub2 has to be installed

Take architecture and firmware setup into account to check if bootloader code in a
boot record is required

Returns True or False
Return type bool

post_init (custom_args)
grub?2 post initialization method

Parameters custom_args (dict) — Contains custom grub2 boot-
loader arguments

{
'target_removable': bool,
'system_volumes': list_of_volumes,
'firmware': FirmWare_instance,
'efi_device': string,
'boot_device': string,
'root_device': string

10.5. kiwi.bootloader.install Package 209

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

10.5.4 kiwi.bootloader.install.zipl Module

class kiwi.bootloader.install.zipl.BootLoaderInstallZipl (root_dir,
de-
vice_provider,
cus-

tom_args=None)
Bases: kiwi.bootloader.install.base.BootLoaderInstallBase

zipl bootloader installation

install ()
Install bootloader on self.device

install_required()
Check if zipl has to be installed

Always required
Returns True
Return type bool

post_init (custom_args)
zipl post initialization method

Parameters custom_args (dict) — Contains custom zipl bootloader
arguments

{'boot_device': string}

10.5.5 Module Contents

class kiwi.bootloader.install.BootLoaderInstall (name,
root_dir, de-
vice_provider,
cus-

tom_args=None)
Bases: object

BootLoaderlInstall Factory
Parameters
* name (string)— bootloader name
* root_dir (string)—root directory path name
* device_provider (object) —instance of DeviceProvider

* custom_args (dict)— custom arguments dictionary

210 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

10.6 kiwi.bootloader Package

10.6.1 Module Contents

10.7 kiwi.bootloader.template Package

10.7.1 Submodules

10.7.2 kiwi.bootloader.template.grub2 Module

class kiwi.bootloader.template.grub2.BootLoaderTemplateGrub2
Bases: object

grub?2 configuraton file templates

get_install_template (failsafe=True, hybrid=True, terminal='gfxterm’,

~ with_timeout=True)
Bootloader configuration template for install media

Parameters

e failsafe (bool)— with failsafe truelfalse

* hybrid (bool)— with hybrid truelfalse

* terminal (string) - output terminal name
Returns instance of Template
Return type Template

get_iso_template (failsafe=True, hybrid=True, terminal='gfxterm’, check-

iso=False)
Bootloader configuration template for live ISO media

Parameters

» failsafe (bool) — with failsafe truelfalse

* hybrid (bool) — with hybrid truelfalse

* terminal (string) — output terminal name
Returns instance of Template
Return type Template

get_multiboot_install_template (failsafe=True, terminal='"gfxterm’,

_ ~ with_timeout=True)
Bootloader configuration template for install media with hypervisor, e.g Xen domO

Parameters
e failsafe (bool)— with failsafe truelfalse

* terminal (string) - output terminal name

10.6. kiwi.bootloader Package 211

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

Returns instance of Template
Return type Template

get_multiboot_iso_template (failsafe=True, terminal="gfxterm’, check-

. iso=False) o '
Bootloader configuration template for live ISO media with hypervisor, e.g Xen
domO
Parameters

» failsafe (bool) — with failsafe truelfalse
* terminal (string) - output terminal name
Returns instance of Template

Return type Template

10.7.3 kiwi.bootloader.template.isolinux Module

class kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux
Bases: object
isolinux configuraton file templates

get_install message_template ()
Bootloader template for text message file in install mode. isolinux displays this as
menu if no graphics mode can be initialized

Returns instance of Template
Return type Template

get_install_template (failsafe=True, with_theme=True, terminal=None,

~ with_timeout=True)
Bootloader configuration template for install media

Parameters

» failsafe (bool) — with failsafe truelfalse

* with_theme (bool) — with graphics theme truelfalse
Returns instance of Template
Return type Template

get_message_template ()
Bootloader template for text message file. isolinux displays this as menu if no
graphics mode can be initialized

Returns instance of Template

Return type Template

212 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

get_multiboot_install_ template (failsafe=True, with_theme=True,
terminal=None,

with_timeout=True)
Bootloader configuration template for install media with hypervisor, e.g Xen domO

Parameters

e failsafe (bool) — with failsafe truelfalse

* with_theme (bool)— with graphics theme truelfalse
Returns instance of Template
Return type Template

get_multiboot_template (failsafe=True, with_theme=True, termi-

nal=None, checkiso=False)
Bootloader configuration template for live media with hypervisor, e.g Xen dom0

Parameters

e failsafe (bool) — with failsafe truelfalse

* with_theme (bool)— with graphics theme truelfalse
Returns instance of Template
Return type Template

get_template (failsafe=True, with_theme=True, terminal=None, check-

iso=False)) .
Bootloader configuration template for live media

Parameters

e failsafe (bool)— with failsafe truelfalse

* with_theme (bool) — with graphics theme truelfalse
Returns instance of Template

Return type Template

10.7.4 kiwi.bootloader.template.zipl Module

class kiwi.bootloader.template.zipl.BootLoaderTemplateZipl
Bases: object
zipl configuraton file templates

get_template (failsafe=True, targettype=None)
Bootloader configuration template for disk boot

Parameters failsafe (bool) — with failsafe truelfalse
Returns instance of Template

Return type Template

10.7. kiwi.bootloader.template Package 213

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

KIWI NG Documentation, Release 9.20.6

10.7.5 Module Contents

10.8 kiwi.boot Package

10.8.1 Module Contents

10.9 kiwi.builder Package

10.9.1 Submodules

10.9.2 kiwi.builder.archive Module

class kiwi.builder.archive.ArchiveBuilder (xml_state, tar-
get_dir, root_dir,

custom_args=None)
Bases: object

Root archive image builder
Parameters
* xml_state (obsject) — Instance of XMLState
* target_dir (str)— target directory path name
* root_dir (st r)—root directory path name

* custom_args (dict) — Custom processing arguments defined as
hash keys: * xz_options: string of XZ compression parameters

create ()
Create a root archive tarball

Build a simple XZ compressed root tarball from the image root tree
Image types which triggers this builder are:

* image="tbz”

Returns result

Return type instance of Result

214 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

10.9.3 kiwi.builder.container Module

class kiwi.builder.container.ContainerBuilder (xml_state,
target_dir,
root_dir, cus-
tom_args=None)
Bases: object
Container image builder
Parameters
e xml state (object) - Instance of XMLState
* target_dir (str) — target directory path name

e root_dir (str)-root directory path name

* custom_args (dict) — Custom processing arguments defined as
hash keys: * xz_options: string of XZ compression parameters

create ()

Builds a container image which is usually a data archive including container specific
metadata.

Image types which triggers this builder are:
* image="docker”
* image="oci”

* image="appx”

Returns result

Return type instance of Result

10.9.4 kiwi.builder.disk Module

class kiwi.builder.disk.DiskBuilder (xmli_state, target_dir, root_dir,

custom_args=None)
Bases: object

Disk image builder
Parameters
e xml_state (object) — Instance of XMLState
* target_dir (str) - Target directory path name
* root_dir (st r)— Root directory path name

* custom_args (dict) — Custom processing arguments defined as
hash keys: * signing_keys: list of package signing keys * xz_options:
string of XZ compression parameters

10.9. kiwi.builder Package 215

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

append_unpartitioned space ()
Extends the raw disk if an unpartitioned area is specified

create ()
Build a bootable disk image and optional installation image The installation image
is a bootable hybrid ISO image which embeds the disk image and an image installer

Image types which triggers this builder are:
* image="oem”

* image="vmx”

Returns result
Return type instance of Result
create_disk ()
Build a bootable raw disk image
Raises

* KiwiInstallMediaError — if install media is required and
image type is not oem

* KiwiVolumeManagerSetupError —root overlay at the same
time volumes are defined is not supported

Returns result
Return type instance of Result

create disk format (result_instance)
Create a bootable disk format from a previously created raw disk image

Parameters result_instance (object)—instance of Result
Returns updated result_instance
Return type instance of Result

create _install media (result_instance)
Build an installation image. The installation image is a bootable hybrid ISO image
which embeds the raw disk image and an image installer

Parameters result_instance (ob ject) —instance of Result
Returns updated result_instance with installation media

Return type instance of Result

216 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

10.9.5 kiwi.builder.filesystem Module

class kiwi.builder.filesystem.FileSystemBuilder (xml_state,

target_dir,
root_dir)

Bases: object

Filesystem image builder

Parameters

create ()
Build a mountable filesystem image

label (st r) —filesystem label

root_uuid (str) — UUID of the created filesystem (on block de-
vice only)

root_dir (str)—root directory path name

target_dir (str) — target directory path name
requested_image_type (st r)— configured image type
requested_filesystem (st r)—requested filesystem name
system_setup (obe jct) — instance of SystemSetup
filename (st r) — file name of the filesystem image
blocksize (int) - configured disk blocksize

filesystem_setup (object) - instance of
FileSystemSetup

filesystems_no_device_node (object) — List of filesys-
tems which are created from a data tree and do not require a block
device e.g loop

filesystem custom_parameters (dict)— Configured cus-
tom filesystem mount and creation arguments

result (object) —instance of Result

Image types which triggers this builder are:

image="ext2”

image="ext3”

image="ext4”

image="btrfs”

image="xfs”

Returns result

Return type instance of Result

10.9. kiwi.builder Package

217

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

10.9.6 kiwi.builder.install Module

class kiwi.builder.install.InstallImageBuilder (xml_state,
root_dir,
target_dir,
boot_image_task,
cus-

tom_args=None)
Bases: object

Installation image builder
Parameters
e xml_state (object) —instance of XMLState
* root_dir (st r)— system image root directory
* target_dir (str) — target directory path name
* boot_image_task (object) — instance of Boot Image

* custom_args (dict) — Custom processing arguments defined as
hash keys: * xz_options: string of XZ compression parameters

create_install iso ()
Create an install ISO from the disk_image as hybrid ISO bootable via legacy BIOS,
EFI and as disk from Stick

Image types which triggers this builder are:
e installiso="truelfalse”
e installstick=""truelfalse”

create_install_ pxe_archive ()
Create an oem install tar archive suitable for installing a disk image via the network
using the PXE boot protocol. The archive contains:

* The raw system image xz compressed

* The raw system image checksum metadata file

The append file template for the boot server

The system image initrd for kexec

The install initrd
* The kernel
Image types which triggers this builder are:

* installpxe=""truelfalse”

218 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

10.9.7 kiwi.builder.live Module

class kiwi.builder.live.LiveImageBuilder (xml_state, tar-
get_dir, root_dir, cus-
tom_args=None)
Bases: object

Live image builder
Parameters
e xml state (object) —instance of XMLState
* target_dir (str) — target directory path name
e root_dir (str)-root directory path name
* custom_args (dict)— Custom processing arguments

create ()
Build a bootable hybrid live ISO image

Image types which triggers this builder are:
* image="1s0"
Raises KiwiLiveBootImageError — if no kernel or hipervisor is
found in boot image tree
Returns result

Return type instance of Result

10.9.8 kiwi.builder.pxe Module

class kiwi.builder.pxe.PxeBuilder (xml_state, target_dir, root_dir, cus-
tom_args=None)
Bases: object

Filesystem based PXE image builder.
Parameters
* xml_state (object)—instance of XMLState
* target_dir (str) — target directory path name
* root_dir (str)— system image root directory

* custom_args (dict) — Custom processing arguments defined as
hash keys: * signing_keys: list of package signing keys * xz_options:
string of XZ compression parameters

create ()
Build a pxe image set consisting out of a boot image(initrd) plus its appropriate

10.9. kiwi.builder Package 219

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

kernel files and the root filesystem image with a checksum. The result can be used
within the kiwi PXE boot infrastructure

Image types which triggers this builder are:
* image="pxe”
Raises KiwiPxeBootImageError — if no kernel or hipervisor is
found in boot image tree
Returns result

Return type instance of Result

10.9.9 Module Contents

class kiwi.builder.ImageBuilder (xml_state, target_dir, root_dir, cus-
tom_args=None)
Bases: object

image builder factory

10.10 kiwi.container Package

10.10.1 Submodules

10.10.2 kiwi.container.oci Module

class kiwi.container.oci.ContainerImageOCI (root_dir, transport,

custom_args=None)
Bases: object

Create oci container from a root directory
Parameters
* root_dir (string) —root directory path name
* custom_args (dict) -

Custom processing arguments defined as hash keys:

Example

{
'container_name': 'name',
'container_tag': '1.0"'",
'additional_tags': ['current', 'foobar'],
'entry_command': ['/bin/bash', '-x'],
'entry_subcommand': ['ls', '-1'],
'maintainer': 'tux',

(continues on next page)

220 Chapter 10. Python API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

(continued from previous page)

'user': 'root',

'workingdir': '/root',

'expose_ports': ['80', '42'],

'volumes': ['/var/log', '/tmp'l],

'environment': {'PATH': '/bin'},

'labels': {'name': 'value'},

'history': {
'created_by': 'some explanation here’,
'comment': 'some comment here',
'author': 'tux'

create (filename, base_image)
Create compressed oci system container tar archive

Parameters
* filename (string)— archive file name

* base_image (string) — archive used as a base image

10.10.3 Module Contents

class kiwi.container.ContainerImage (name, root_dir, cus-
tom_args=None)
Bases: object

Container Image factory
Parameters
* name (string)— container system name
* root_dir (string)—root directory path name

* custom_args (dict)— custom arguments

10.11 Kkiwi.container.setup Package

10.11.1 Submodules

10.11.2 kiwi.container.setup.base Module

class kiwi.container.setup.base.ContainerSetupBase (root_dir,
cus-

tom_args=None)

Bases: object

10.11. kiwi.container.setup Package

221

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

KIWI NG Documentation, Release 9.20.6

Base class for setting up the root system to create a container image from for e.g docker.
The methods here are generic to linux systems following the FHS standard and modern
enough e.g based on systemd

Attributes
* root_dir root directory path name
* custom_args dict of custom arguments

deactivate_bootloader_setup ()
Container bootloader setup

Tell the system there is no bootloader configuration it needs to care for. A container
does not boot

deactivate_root_filesystem check ()
Container filesystem check setup

The root filesystem of a container could be an overlay or a mapped device. In
any case it should not be checked for consistency as this is should be done by the
container infrastructure

deactivate_systemd_service (name)
Container system services setup

Init systems among others also controls services which starts at boot time. A con-
tainer does not really boot. Thus some services needs to be deactivated

Parameters name (string) — systemd service name

get_container name ()
Container name

Returns name
Return type str

post_init (custom_args)
Post initialization method

Implementation in specialized container setup class
Parameters custom_args (11st)— unused

setup ()
Setup container metadata

Implementation in specialized bootloader class required

setup_root_console ()
Container console setup

/dev/console should be allowed to login by root

setup_static_device_nodes ()
Container device node setup

222

Chapter 10. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

KIWI NG Documentation, Release 9.20.6

Without subsystems like udev running in a container it is required to provide a set
of device nodes to let the system in the container function correctly. This is done
by syncing the host system nodes to the container. That this will also create device
nodes which are not necessarily present in the container later is a know limitation
of this method and considered harmless

10.11.3 kiwi.container.setup.docker Module

class kiwi.container.setup.docker.ContainerSetupDocker (root_dir,
cus-

tom_args=None)
Bases: kiwi.container.setup.oci.ContainerSetupOCI

Docker container setup

10.11.4 Module Contents

class kiwi.container.setup.ContainerSetup (name, root_dir, cus-

tom_args=None)
Bases: object

container setup factory

10.12 kiwi.filesystem Package

10.12.1 Submodules

10.12.2 kiwi.filesystem.base Module

class kiwi.filesystem.base.FileSystemBase (device_provider,
root_dir=None, cus-

tom_args=None)
Bases: object

Implements base class for filesystem interface
Parameters

* device_provider (ob ject) — Instance of a class based on De-
viceProvider required for filesystems which needs a block device for
creation. In most cases the DeviceProvider is a LoopDevice

* root_dir (string)—root directory path name
* custom_args (dict) — custom filesystem arguments

create_on_device (label=None)
Create filesystem on block device

10.12. kiwi.filesystem Package 223

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

KIWI NG Documentation, Release 9.20.6

Implement in specialized filesystem class for filesystems which requires a block
device f